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Abstract
Recently, the special kind of near-regular texture has drawn significant attention from researchers in the field of
texture synthesis. Near-regular textures contain global regular structures that pose significant problems to the
popular sample-based approaches, and irregular stochastic structures that can not be reproduced by simple tiling.
Existing work tries to overcome this problem by user assisted modeling of the regular structures and then relies
on regular tiling. In this paper we use the concept of fractional Fourier analysis to perform a fully automatic
separation of the global regular structure from the irregular structure. The actual synthesis is performed by gen-
erating a fractional Fourier texture mask from the extracted global regular structure which is used to guide the
synthesis of irregular texture details. Our new method allows for automatic and efficient synthesis of a wide range
of near-regular textures preserving their regular structures and faithfully reproducing their stochastic elements.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, shading, shadowing, and texture, I.4.7 [Image Processing and Computer Vison]:
Feature Measurement – Texture

1. Introduction

During the last years, the area of texture synthesis has
been devoted significant work from researchers in computer
graphics and computer vision. The developed algorithms not
only achieve impressive synthesis results for various kinds of
textures but also provide general methods applicable to other
interesting fields like image restoration or geometry comple-
tion. Nevertheless, not all kinds of textures can currently be
handled in a pleasing manner. Especially textures referred to
as near-regular textures [LTL05] that contain global, regular
structures as well as stochastic deviations from regularity are
still very difficult if not impossible to synthesize faithfully.
Examples of this type of texture are frequently found in the
real world: most textiles (e.g. used for clothing, furniture, or
car interiors) and construction elements (walls, floors, grid
structures, corrugated sheet roofs) fall into this category, and
even natural objects like water waves, feathers and fur.

The specific difficulty of these textures originates from
the strong mixture of regular patterns which govern global
structure, and the subtle, yet characteristic deviation from
this regularity. Since the regular patterns may be of arbi-
trary scale, existing sample-based synthesis algorithms fail

to faithfully reproduce these textures due to restrictions of
neighborhood sizes and lack of adequate distance functions.

In this paper we introduce the concept of fractional
Fourier texture masks (procedural textures for the regular
parts), which are derived by extracting the regular struc-
ture from a texture using fractional Fourier analysis and "en-
larging" it to a desired size. These masks are used to guide
sample-based synthesis algorithms in faithful selection and
placement of copied pixels or patches, effectively enforcing
global, regular structure and therefore leading to drastically
improved synthesis quality for near-regular textures.

Our new, robust method for synthesis of near-regular tex-
tures is composed of three major steps:

1. separation of the dominant regular structure from irreg-
ular texture detail using the fractional Fourier transform
and an intensity filter,

2. synthesis of the regular structure based on the inverse
fractional Fourier transform,

3. addition of irregular texture detail by extended sample-
based texture synthesis algorithms.

In the following, we first review some related work in
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Section2. Afterwards, Section3 provides background and
implementation details of our algorithms for separation and
synthesis of the regular texture structure. Section4 then
shows how the resulting fractional Fourier texture masks can
be used to guide existing sample-based texture algorithms to
faithfully reproduce both local and global structure. After
presenting and discussing our results in Section5 we con-
clude and describe future directions of research in Section6.

2. Related work

The objective of texture synthesis is to generate images that
reproduce a distribution of textural features which humans
perceive as a specific type of texture.

For a limited class of textures this distribution can be
modeled using for example Perlin Noise [Per85] or reaction-
diffusion systems [Tur91]. These types of procedural texture
synthesis offer the advantage of user control and extremely
compact representation.

To capture more general types of texture, statistical mod-
eling has been adopted. Motivated by research on human
texture perception, statistics of filter response vectors have
been used most frequently. The actual synthesis is per-
formed by iteratively matching statistics of a sample tex-
ture and the synthesized result. E.g., Heeger and Bergen
[HB95] matched marginal histograms of filter response
vectors at different spatial scales. Follow up publications
[Bon97, PS00, BJEYLW01] improved upon this scheme by
enforcing more complex joint statistics of filter coefficients
but still fail on highly structured textures. Few publications
(e.g. [ZWM98]) propose parametric texture models based on
the Markov Random Field model of texture. Texture synthe-
sis involves fitting the model to a sample texture and sam-
pling from the resulting distribution which can be computa-
tionally very expensive and still reproduces mainly stochas-
tic textures only.

These elaborate models are outperformed in speed, qual-
ity and applicability by simple non-parametric sampling as
proposed in the seminal paper by Efros and Leung [EL99].
The method synthesizes a texture pixel by pixel by selec-
tively copying pixels from a sample. Appropriate pixels are
identified by comparing their neighborhoods whose size is
the only tuning parameter of the algorithm. It can be shown
that this scheme produces consistent estimates of the dis-
tribution of pixels given their neighborhood [Lev02]. This
simple but powerful idea has inspired many researchers and
numerous improvements of the original algorithm have been
published over the years. Many of them focused on speed-
ing up the search for similar neighborhoods using for exam-
ple tree-structured vector quantization [WL00], k-coherance
search [TZL∗02], or jump maps [ZG02]. For textures with
large structures compared to affordable neighborhood sizes,
copying of whole patches instead of single pixels was ad-
vocated: Efros and Freeman [EF01] select fixed size blocks

and paste them in a regular manner such that the color
differences in the overlap region are minimized. A similar
approach is followed by Liang et al. [LLX ∗01] but they
apply feathering to merge overlapping patches. Kwatra et
al. [KSE∗03] generalize and improve these approaches by
reducing the problem of combining the pixels to a minimal
cut problem and allowing for blocks of arbitrary sizes. Re-
gions of varying size are as well supported by the algorithm
of Nealen and Alexa [NA03]. Despite the fact that copying
large texture regions allows for preservation of large texture
structures, the exact alignment of structures in the target tex-
ture often fails due to bad placement of patches.

To overcome these problems, the concept oftexture masks
was developed. These masks are either used to guide con-
sistent [LYS01] or user-controlled [Ash01] texture place-
ment, or to enforce that the shape of prominent features
e.g. from animal fur is not broken apart during texture syn-
thesis [ZZV∗03]. We use a similar approach in the final syn-
thesis step of our algorithm but we propose a unique and
automatic analysis for generating such texture masks from
near-regular textures.

These near-regular textures have been devoted attention
from the community because they contain regular (tileable)
structures that are not captured by local distributions, and ir-
regular elements that are not reproduced correctly by tiling.
Therefore, textures dominated by regular structures still pose
problems for sample-based texture synthesis and need spe-
cial attention. A first step in this direction was made by the
work of Dischler et al. [DMLC02] who tried to identify ele-
mentary patches in the texture and analyzed their spatial ar-
rangement which is then reproduced in the synthesized tex-
ture. An approach bridging the gap between regular tiling
and stochastic placement of texture elements was presented
by Cohen et al. [CSHD03]. They enforce boundary con-
ditions along tiles but the placement does not account for
global regular structures ranging across tiles.

A more general approach for handling regular and poten-
tially large structures during texture synthesis was developed
by Liu et al. [LCT04] and Liu and Tsin [LTL05]. They used
the observation that an infinite variety of periodic patterns
can be characterized by a finite number of symmetry groups
to extract tileable parts of a texture that correspond to the
regular structure of the texture. Tiling these textures with
overlap and merging the tiles leads to very good results for
most regular textures. The approach was recently extended
to handle near-regular textures [LLH04] by treating them
as deformations of regular textures. One drawback of this
method is that extraction of tiles requires significant user in-
tervention whereas our process is fully automatic. Another
problem is that it requires at least two complete tiles to be in-
cluded in the sample texture. Although this usually poses no
problem, such data may be unavailable if regular structures
of different scales are included in the texture (a complete tile
would need to be as large as the least common multiple of the
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a) Original b) DFT low-pass c) DFT intensity d) FrDFT intensity

a) Original
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b) DFT low-p.
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c) DFT int.
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Figure 1: Results of applying filters to a Corduroy texture samplewith black dots added at random locations. Whereas the images
show the texture sample, the curves visualize the luminance values of the pixels of the first scanline only. While the lowpass
filter result (b) still contains irregular structures and about 20 basis functions are required for a reasonable approximation of
the 1D signal, the intensity filter (c) performs much better using just 6 frequencies. Nevertheless, the leakage error can only be
eliminated applying the FrDFT intensity filter (d).

different scales). Our approach is able to treat the different
scales individually and therefore requires no such large tex-
tures. Finally, unlike our approach they neither separate reg-
ular from stochastic texture elements, which improves the
quality of synthesized results, nor do they compute an ex-
plicit, compact model of the regular texture parts.

3. FrDFT-Analysis

In this section, we describe our approach for separating the
regular structure, which dominates the appearance of many
near-regular textures like knitware or woven textiles, from
the irregular one. Our intuitive distinction between these two
kinds of data is that structures are perceived as regular if they
occur (at least nearly) periodically while irregular structures
are distributed in a different, more complex way. Therefore,
we represent a texture by periodic basis functions to deter-
mine and extract regular structures.

Such a representation can be derived by applying a dis-

crete Fourier transformation (DFT) which represents the sig-
nal by a sum of sine and cosine functions. Given the resulting
frequency spectrum, the question of which and how many
frequencies are relevant for the regular part of the image sig-
nal arises. If too few frequencies are taken into account, most
of the structure is smoothed out. If too many frequencies are
selected, the signal itself is better reproduced but at the cost
of introducing irregular structure.

One way to select the relevant frequencies is to apply a
low pass filter to the image signal. In previous approaches
for texture synthesis this idea is incorporated by building
image pyramids and synthesizing the low-resolution levels
first. Unfortunately, in general these low frequencies do not
correspond to the regular structures directly, which is shown
in Figure1b.

A more appropriate selection criterion is based on two
observations. First, since the regular structures in the im-
age signal dominate the overall appearance of most near-
regular textures (see e.g. the Corduroy sample in Figure1),
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Figure 2: Fractional frequency. Representing the perfectly
regular fractional frequency b= 5

2 by integer frequencies
requires a large amount of basis functions, since the corre-
sponding signal is not periodic w.r.t. the range[0,m].

they carry a much larger amount of energy than the irregu-
lar patterns. Second, while the energy contained in strongly
visible irregular structures is distributed among a large num-
ber of frequencies, the main part of the energy contained in
the periodic structures is carried by a few frequencies al-
ready (compare Figure1c). We therefore select the frequen-
cies carrying the most energy and call the selection based on
this criterion anintensityfilter.

While application of the intensity filter to the DFT of the
signal yields good results already, the leakage effect of the
DFT introduces artifacts along the borders of the image as
illustrated in Figure1c. This prohibits high quality synthesis
of the extracted regular structure since the erroneous regions
would be contained repeatedly in the synthesized image. The
reason for the existance of leakage problems is shown in
Figure2, where both functions represent perfectly periodic
signals restricted to the interval[0,m]. With respect to the
given interval, only the function withb = 2 is periodic, the
one with b = 5

2 is not. Applying the intensity filter to the
DFT always yields a signal periodic w.r.t. the given inter-
val, which prohibits a faithful representation of the perfectly
regular frequencyb = 5

2 . For a texture the restriction of the
signal to such a window is usually defined implicitely when
capturing the texture by a photograph. The window is typi-
cally neither perfectly aligned with the regular structure nor
does it contain anintegeramount of oscillations of the reg-
ular structure. A solution for this problem is the use of a
fractional discrete Fourier transform.

3.1. Fractional DFT

Definition 3.1 (Fractional Frequency) For a function
f (k) = cos(2π b

mk) defined on[0,m], b ∈ [0, m
2 ], we call b

the frequency with respect tom. b is called afractional fre-
quencyif b /∈ Z. For a two-dimensional function

f (kx,ky) = cos

(
2πi

(
bxkx

mx
+

byky

my

))
the analogon holds for a frequency pair(bx,by) with respect
to mx andmy.
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Figure 3: Comparison of absolute DFT and FrDFT coeffi-
cients for the curve in Figure1 after subtraction of mean
value. The dominant regular structure is caused by fre-
quency 7.2. The small plot shows the FrDFT of the function
cos(7.2 ·2πx).

Synthesizing the regular structure by continued evaluation
of periodic functions requires exact knowledge of the frac-
tional frequencies corresponding to the regular structures. A
method to analyse these frequencies is the fractional Fourier
transform (FrDFT, also called linear FrDFT [Wei]) [BS90].
While the DFT of a sequencea j , j = 0, . . . ,m−1 is a func-
tion FT : Z→ C with

FT(z) =
1
m

m−1

∑
j=0

a je
−2πi z j

m , (1)

the fractional Fourier transform of a sequencea j , j =
0, . . . ,m−1 is a functionFT : R→ C with

FT(k) =
1
m

m−1

∑
j=0

a je
−2πi k j

m (2)

or for a two-dimensional texture

FT(kx,ky) =
1

mxmy

my−1

∑
jy=0

mx−1

∑
jx=0

a jx jye
−2πi

(
kx jx
mx

+ ky jy
my

)
. (3)

The following property provides the key idea to extract the
exact fractional frequency of a signal: The absolute value
|FT(k)| of the FrDFT of acomplexperiodic sequence of

the form a j = Fbe2πi b j
m , j = 0, . . . ,m− 1,Fb ∈ C with fre-

quencyb ∈ R reaches its maximum fork = b [BS90] and
FT(b) = Fb is the Fourier coefficient that determines inten-
sity and phase (see Figure3). To exploit this property (which
analogously holds for frequency pairs) in the context of tex-
ture synthesis, two problems have to be solved. First, tex-
tures are real-valued. Second, the regular structure of most
relevant textures is contained in more than one frequency
and therefore not only a single frequency has to be deter-
mined.
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A widely accepted approximation to the first problem is
the computation of theanalytic signalfrom the real-valued
input by computing the Hilbert transform [Bra99].

Solving the second problem is more difficult. If the reg-
ular structure is contained in several frequency pairs (as
usual), the FrDFT is the sum of the FrDFT of each of the
pairs. As the small plot in Figure3 shows,|FT(k)| contains
many local maxima even for a function determined by a sin-
gle dominant fractional frequency. The FrDFT of a real se-
quence as in the large plot of Figure3 therefore contains var-
ious local maxima of which some correspond to fractional
frequencies contained in the regular structure and some do
not. In the following we will therefore describe a method to
identify the correct maxima inFT(kx,ky) corresponding to
the fractional frequencies that carry the regular structure.

The method we developed is based on the fact that the
magnitudeml i of a local maximum at(kxi ,kyi ) is much
smaller than the magnitudemg of the global maximum at
(kxg,kyg) (ml i ≈ mg/|π2(kxg − kxi )(kyg − kyi )| for kxi 6= kxg

andkyi 6= kyg). This is due to the fact that the FrDFT of a 2D
function with frequenciesbx andby can be approximated as
follows (for a proof see AppendixA):

|FTbx,by(kx,ky)|2 ≈

|Fbx,by|
2 ·sinc2 (kx−bx) ·sinc2 (ky−by) (4)

wheresinc(x) is defined as

sinc(x) =

{
sin(πx)

πx x 6= 0

1 x = 0
. (5)

Due to this strong difference between the magnitude of
local and global maxima, the global maxima should be well
preserved even when multiple fractional frequencies are con-
tained in the sequence. In special, the most intense maximum
should still remain the global maximum, which turned out to
be a valid assumption during our tests.

The basic method for extraction of relevant frequencies
is therefore the following: we determine the frequency with
largest absolute value of the corresponding fractional Fourier
coefficient, remove the contributions from this frequency
from the analyzed image, do a FrDFT transformation on the
remaining image, and keep continuing extracting frequen-
cies until the absolute value of the largest remaining Fourier
coefficient is below some threshold. Determining largest val-
ues in each step is done by first sampling the coefficients
with a fixed step size and then applying a standard maxi-
mization algorithm, starting at the sample with largest value.

Unfortunately, extracting frequencies in this way is very
time consuming (the run-time of the algorithm is roughly
O(mxmy

mx
dx

my

dy
n), wheredx anddy denote the distance inx

andy direction between values for which the FrDFT coef-
ficient is computed andn denotes the number of extracted
frequencies). We therefore suggest to improve the run-time

Threshold 0.5 1 2 5
Frequency pairs found 175 76 35 14
Runtime 97 s 48 s 27 s 11 s

Table 1: Runtime and result size of the FrDFT analysis for
various thresholds and the texture from Figure1 measured
on a 2.4 GHz PC.

complexity of the algorithm in two ways. First, the maxi-
mum search in the 2D-FrDFT can be reduced to the one-
dimensional case, because for fixedkx or fixed ky Equa-
tion (4) is a 1D-sinc2 function. To find a 2D-maximum, we
therefore first search a 1d-maximum with fixedky and then
use its position as fixedkx.

Applying this first modification, the run-time complex-
ity is reduced toO(mxmy(mx

dx
+ my

dy
)n) but still remains high.

Therefore, our second optimization is to restrict the regions
in which we search for the maxima. As visible in Figure3,
the position of a FrDFT global maximum can roughly be
determined using the DFT. We are only looking for the most
intense frequencies and thus only the highest maxima ofFT.
The DFT gives us the values ofFT for kx,ky ∈ Z and there-
fore we only need to search the[−1,1]2 regions around DFT
coefficients that are larger than a threshold. By choosing a
high threshold, a large amount of time can be saved (Ta-
ble 1). Applying this second modification reduces the run-
time toO(mxmy( 2

dx
+ 2

dy
)c), wherec denotes the number of

DFT values above the threshold.

The extracted frequency pairs are near-optimal only since
interference effects caused by the summation of multiple fre-
quencies shift the location of maxima slightly. To compen-
sate for this effect, we optimize the frequency pairs such that
the least-squares color difference between the original image
and the one reconstructed from the frequency pairs is mini-
mized.

3.2. Fractional Fourier Texture Masks

The FrDFT analysis determines frequency pairsb1, . . . ,bn

with respective Fourier coefficientsF1, . . . ,Fn. These fre-
quencies can be synthesized using the inverse DFT formula:

a jx jy =
n

∑
h=1

Fhe
2πi

(
bhx jx

mx
+

bhy jy
my

)
. (6)

If we choosejx, jy ∈ Z, the size of the synthesized texture
is unlimited and the frequencies of the regular structures
represent the parameters of a procedural texture containing
these structures. This process is known as Fourier synthe-
sis [WW92] and we call the outputfractional Fourier texture
masks(FFTMs). Examples of FFTMs are shown in the third
row of Figure7.

We can use the frequency information to calculate the size
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of a texture withtilable regular structures. A regular struc-
ture is tilable, if the frequencies describing the structure are
not fractional w.r.t. the texture size. In simple cases, this is
the most intense frequency pair. In the general case, the low-
est frequency of the regular structures has to be determined.
Let bl be this frequency pair. Then

m′
x = mx ·

nx

blx
andm′

y = my ·
ny

bly
(7)

produces tilable sizes for all(nx,ny) ∈ N× N and nx =
ny = 1 is a single tile of the pattern as described by Liu et
al. [LLH04].

The FrDFT analysis and synthesis are performed for each
color channel separately. Our tests determined that trans-
forming the RGB color data to YCrCb colorspace gives best
results since it reduced deviation of the per-channel frequen-
cies. In addition, for many textures the analysis turned out
to become faster, because usually the Y-channel contains the
most information.

4. Synthesis

In this section we describe how to incorporate FFTMs into
existing pixel- or patch-based synthesis algorithms. The out-
put texture will be denoted byTout, byMout we will refer to a
FFTM with size equal to the desired output size, and byMin
to the part corresponding to input textureTin. In this way for
every pixel inTin there is exactly one corresponding pixel in
the FFTMMin.

4.1. Pixel-Based Synthesis

In the pixel-based synthesis approach an output texture is
generated from an input texture by selectively copying pix-
els. A pixel is chosen by comparing the neighborhood of
the current pixel in the output to a candidate list of neigh-
borhoods of pixels in the input texture. The comparison
of neighborhoods is typically carried out by computing
the L2 norm of the difference between neighborhood vec-
tors~N(Tin,xin) and~N(Tout,xout). A typical neighborhood is
shown in Figure4.

Incorporating FFTMs into pixel-based synthesis algo-
rithms can be achieved in different ways, from which we
implemented the two following ones:

Full neighborhood comparison. This approach is inspired
by the texture mask approach as proposed by Zhang
et al. [ZZV∗03]. The neighborhood used to determine
best matching pixels is extended fromNupper to Nf ull =
Nupper∪Nlower. Whereas the similarity of pixels inNupper

is measured by the standardL2 norm

dTT =
∥∥∥~N(Tin,xin)−~N(Tout,xout)

∥∥∥
2
. (8)

For pixels inNlower we evaluate theL2 norm

dMM =
∥∥∥~N(Min,xin)−~N(Mout,xout)

∥∥∥
2

(9)

of the respective FFTM values. The contributions from
both parts are summed into a single value after scaling the
FFTM-similarities by a mask weightc. Please note that
incorporatingdMM can be interpreted as the previously
missing way to improve the standard similarity measure
to consider structural information as well.

Cluster ID match. The pixels ofMin are clustered based
on similar neighborhoodsNf ull using k-means clustering.
Whenever a pixelxout is synthesized, the cluster ID of the
corresponding pixel is determined. This cluster ID defines
a candidate set of pixels inMin and thus corresponding
pixels Tin from which the pixel to be copied is selected
using the measuredTT defined above.

Synthesized
(Tout and Mout)

Not yet synthesized 
(Mout only)

Nupper

Nlower

xout

N
y

Nx

Figure 4: The neighborhoods Nupper and Nlower with size
Nx×Ny. Nupper is defined for all textures and masks, but
Nlower is undefined for Tout.

Figure 5: Upper row: synthesis results with k-coherence and
cluster ID match. The results with full search and full neigh-
borhood comparison are similar. Lower row: ANN search
and full neighborhood comparison. Both examples used a
3×3 neighborhood. The images on the right visualize x and
y components of source coordinates respectively. The origi-
nal texture is shown in Figure7.

To accelerate the actual neighborhood selection stan-
dard strategies like the k-coherence search of Tong et
al. [TZL∗02] and approximate nearest neighbor (ANN)
search [LLX ∗01, ZG02] can be applied in both approaches.
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We achieved the best results for the combination of full
neighborhood comparison with ANN search. An examina-
tion of the output source coordinates as illustrated in Fig-
ure 5 shows the reason for the better quality of the ANN
search results. The apparent noise in the output texture is
caused by very little spatial coherence in the source co-
ordinates. The noise isnot caused by problems in the k-
coherence or the ANN search algorithm, because it occurs
even with an exhaustive search that always finds the best
matching neighborhood. If the ANN search with the full
neighborhood search is used, the source coordinates show
that small spatially coherent regions are copied from the in-
put texture. This is due to the implementation of the ANN
algorithm we use [AM], which favors neighborhood vectors
close to the query vector if the tree was built with the vectors
in scanline order.

During our experiments, we found that for reproducing
simple structures with the ANN approach, a small 2× 2
neighborhood and a weightc≈ 1 produce good results. Re-
production of more complex structures like knitted wool re-
quires a larger 6×6 neighborhood to obtain good results and
possibly a higher value forc. Usually, ifc< 0.1 the mask has
no effect, and ifc > 5 the mask weight is too large. In case
large neighborhoods are required, we apply Principal Com-
ponent Analysis to reduce the dimension of the neighbor-
hood vectors to about 16, which significantly increases syn-
thesis speed while just slightly decreasing synthesis quality.

4.2. Patch synthesis

Incorporation of FFTMs into patch-based synthesis algo-
rithms basically follows the same idea as for pixel-based
methods. Whereas the quality of pixel-based algorithms was
improved by completing the full neighborhood with val-
ues from FFTMs, we applied the same principle to parts of
patches that do not overlap with already synthesized pixels.

Additionally, to support iterative improvement of synthe-
sized textures using the Graphcut algorithm [KSE∗03] we
extended the pixel representation from standard 3D RGB
vectors to 6D vectors that additionally contain the respective
mask values, scaled by the FFTM weightc. This way, we can
simply reuse the standardL2 norm to computedMM +c·dTT,
which helps to find well fitting patches that additionally pre-
serve the regular structure.

4.3. Extensions

Our algorithm can easily be extended to create tilable tex-
tures. With Equation (7) we calculate an appropriate output
size for the regular structures. If we wrap around the neigh-
borhoods at the border and add a second pass for the pixels
where the opposite neighborhood was undefined during the
first pass, the irregular structures produced by the pixel syn-
thesis fit without visible edges.

5. Results

We tested our algorithms with various texture samples. The
pixel-based algorithm is very easy to use since the only
manual parameters that need to be selected are the inten-
sity filter threshold, the neighborhood size, and the mask
weight. For synthesizing textures with the help of FFTMs
we used a 3×3 neighborhood which is (much) smaller than
the largest structures in the textures. When omitting FFTMs
much larger neighborhoods were used (for the images in Fig-
ure 7, from left ro right 6× 6, 5× 5, 8× 8, 10× 10, and
10×10) which increases synthesis times drastically.

As the results in Figure7 shows, FFTMs clearly
help to preserve regular structures. While standard ANN-
accelerated per-pixel synthesis of the textile textures fails
to preserve the appearance of the textures – especially re-
production of the rightmost texture fails completely – sim-
ply employing the FFTMs as textures performs much bet-
ter already, since they preserve the textures’ most significant
property: their regularity. Addition of irregular detail further
improves the quality of the texture whereas the degree of
improvement depends on the visual dominance of the regu-
lar structure. Especially textures with visually rich appear-
ance like the knitted wool or the rightmost texture profit ex-
tremely. To our knowledge no other automatic texture syn-
thesis algorithm is capable of producing results that resem-
ble the input textures that closely. Additional, very nice re-
sults that do not represent textiles are shown in Figure8.

Figure 6: Example for improved quality of patch-based
synthesis. Although the mask has good quality, the ANN
synthesis (middle) fails to reproduce the irregular struc-
tures. Applying extended patch-based synthesis incorporat-
ing FFTMs (right) the results become very pleasing.

Synthesizing textures using our patch-based approach
leads to very good results which are superior to the results
of the ANN-accelerated pixel-based method in some cases.
Figure6 shows an example in which the pixel-based algo-
rithm fails to add the irregular details but which is handled
by the patch-based algorithm very well. Further results of
this method are shown in Figure9. Synthesis was done us-
ing the sub-patch matching strategy [KSE∗03], which was
previously not known to give good results for near-regular
texture, which confirms the usefulness of FFTMs. The used
patch size can be determined automatically by computing
parts of the texture that are tileable (see Section3.2), which
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are usually much smaller than the full texture, leading to run-
time advances compared to the entire patch matching strat-
egy [KSE∗03]. The determined patch size needs not be very
accurate to achieve pleasing results (e.g. the bottom right
texture in Figure9 contains features of size 75× 60 pixels
and was synthesized using a patch size of 40× 40). Please
note that synthesis of the textures in Figure6 and in the top
left of Figure9 was previously not possible using fully auto-
matic algorithms (see [LHW∗04]).

1282 pixels 2392 pixels
Neighborhoodsize No PCA PCA No PCA PCA

2×2 0.16 0.07 0.42 0.10
3×3 0.42 0.12 1.44 0.14
4×4 0.90 0.21 3.22 0.21
5×5 1.65 0.37 — 0.30

Table 2: Runtime per output pixel for the ANN synthesis in
milliseconds for the first (1282 pixels) and fourth (2392 pix-
els) sample in figure7. PCA was applied to the neighbor-
hood vectors from Tin and Min to reduce their dimension to
16.

Table2 shows some runtime examples for the ANN syn-
thesis, measured on a 2.4 GHz Pentium 4. The runtime in-
creases with the neighborhood size, but can be reduced sig-
nificantly using PCA. Other measurements show that the
ANN search time depends on the sample appearance, be-
cause the time varies for samples of the same size. In gen-

eral, we found an approximate runtime ofO( |N|ε log|Tin|)
per output pixel.

Synthesis times for the patch-based method are much
longer, typically many minutes for the examples shown in
this paper. The exact time naturally depends on the size of
the synthesized texture, the number of improvement steps
necessary or allowed, and the size of copied patches. Never-
theless, synthesis times are not noticeably longer than with-
out incorporation of FFTMs.

Comparing the pixel- and patch-based synthesis ap-
proaches is difficult. For most textures, ANN-accelerated
synthesis already yields very good results at a fast speed.
Nevertheless, we found the patch-based algorithm to be
more robust: it provides good results even in cases where
the pixel-based approach fails.

The quality of the FFTM has great influence on the result.
If the mask contains the regular structures without errors,
the synthesized textures are of high quality. Otherwise, the
synthesis algorithms produce errors as shown in Figure10.

The errors are caused by slight deviations from the true
frequency in the FrDFT analysis process and occur espe-
cially, if the texture has sharp structures like the brick wall.
The Fourier transform of these structures consists of sev-
eral frequencies at distinct, fixed ratios to each other. If
the FrDFT analysis fails to determine these frequencies ex-
actly due to numerical problems or due to local minima

the Levenberg-Marquardt optimization method gets stuck
in, undesired interference patterns as visible in the mask in
Figure10 occur. The errors are usually small enough to al-
low a reproduction of the sample, thus the FrDFT intensity
filter can always be used to avoid the DFT leakage effect.
However, for textures with difficult structures, the larger the
FrDFT synthesized area becomes, the more disturbed the re-
sult gets (see Figure10).

6. Conclusions

In this paper a new method for synthesis of near-regular tex-
tures was proposed. The key observation behind this method
is that an DFT intensity filter can be applied to separate dom-
inant regular structures from irregular texture detail. Since
the DFT intensity filter works for already tileable textures
only, we applied FrDFT instead of DFT. We introduced an
algorithm for automatic extraction and synthesis of the reg-
ular patterns, resulting in fractional Fourier texture masks.
Based on these masks we proposed sample-based texture
synthesis algorithms that add the missing irregular texture
details and showed the high quality of results by several ex-
amples.

Application of the FrDFT intensity filter should prove
beneficial in combination with other methods as well. Liu
et al.’s [LTL05] approach for computation of shape and size
of tileable texture elements, which is based on autocorre-
lations, should be improved by removing irregular texture
parts. Additionally, the extracted frequencies represent an
explicit description of unique texture properties and might
thus contribute to accurate texture recognition. Finally, the
intensity filter might be employed as the basis of a special-
ized compression technique.

Although our method turned out to be very robust for tex-
tures with regular structures that carry a large amount of en-
ergy, handling of regular textures like pinstriped suits is diffi-
cult. Improving our technique for textures where the regular
patterns are very small and appear at very distant locations
– leading to a much smaller amount of energy – remains for
future research.

In addition, handling the problem of inexact extraction of
frequencies as described in Section5 will also be investi-
gated further.

Finally, in order to make our approach applicable to near-
regular textures with substantial geometric variation, we
plan to combine our method with regularization approaches
like the one of Liu et al. [LLH04].
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Figure 7: Examples for successful synthesis. Each column shows from top to bottom the input sample, standard ANN synthesis
without a mask, the mask created with the FrDFT synthesis, and the ANN synthesis result with mask. In many cases the FFTM
provides a very accurate approximation of the synthesized texture already.

Figure 8: Examples for successful synthesis of non-textile samples with the pixel-based approach.
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Figure 9: Examples for successful synthesis with the patch-based approach.

Figure 10: Problematic synthesis. The FFTM (middle) contains errors if the frequencies are extracted inaccurately, which leads
to undesired interference. In such a case, texture synthesis (right) fails to reproduce the original appearance (left).

Appendix A: Proof of Approximation4

Theorem A.1Let d := 2π(k−b). Then fork,b∈ [0,m[

|FTb(k)|2 ≈ sinc2(k−b). (10)

Proof A.1

sinc2(k−b) =
2

d2
(1−cos(d)) .

|FTb(k)|2 =
1

m2

∣∣∣∣∣ 1−eid

1−e
id
m

∣∣∣∣∣
2

=
1−cos(d)

m2(1−cos( d
m))

[BS90]

The Taylor series of 1−cos
(

d
m

)
gives

1−cos

(
d

m

)
≈

d2

2m2

⇒
1−cos(d)

m2(1−cos( d
m))

≈
2

d2
(1−cos(d))

If frequency b is described by Fourier coefficientFb, then
|FTb(k)|2 ≈ (|Fb| ·sinc(k−b))2. For a two-dimensional frequency
(bx,by) with coefficientFbx,by

|FTbx,by(kx,ky)|2 ≈ |Fbx,by |
2 ·sinc2 (kx−bx) ·sinc2 (ky−by) (11)

for bx,kx ∈ [0,mx[ andby,ky ∈ [0,my[.
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