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Abstract

In the last decade, Fourier Volume Rendering (FVR) has
obtained considerable attention due to its O(N2logN) ren-
dering complexity, where O(N3) is the volume size. Al-
though ordinary volume rendering has O(N3) rendering
complexity, it is still preferred over FVR for the main rea-
son, that FVR offers bad localization of spacial structures.
As a consequence, it was assumed, that it is hardly possi-
ble to apply 1D transfer functions, which arbitrarily mod-
ify voxel values not only in dependence of the position, but
also the voxel value. We show that this assumption is not
true for threshold operators. Based on the theory of Fourier
series, we derive a FVR method, which is capable of inte-
grating all sample points greater (or alternatively, lower)
than an iso-value τ during rendering, where τ can be modi-
fied interactively during the rendering session. We compare
our method with other approaches and we show examples
on well-known datasets to illustrate the quality of the ren-
derings.

1. Introduction

Volume rendering is a technique for visualizing a three-
dimensional scalar or vector field. Existing volume render-
ing methods can be roughly classified into two main cat-
egories, depending on their rendering time complexity: (i)
spacial domain methods and (ii) frequency domain meth-
ods. The first class of methods is nowadays the method
of choice, since arbitrary lighting models can be simulated
and material properties can be modelled freely. Since every
voxel of the dataset has to be visited at least once, the main
disadvantage of these methods is their highO(N3) render-
ing complexity, whereO(N3) is the size of the dataset. The
second class of algorithms work in Fourier space. The sit-
uation is opposite here: using the Fourier Projection-Slice
theorem [13], rendering can be accomplished fast, with
O(N2logN) complexity. This advantage is gained by re-

stricting the lighting model to have low albedo, no inter-
reflection, and no self-occlusion; this kind of optical model
is calledX-ray-like, since the final projections of the inves-
tigated datasets look like as if screened by X-rays.

A further problem with Fourier rendering models is its
weakness in locating spacial structures. That is, once the
preprocessing step is finished, the user is hardly able to
apply classification techniques - like transfer functions -
on the dataset during rendering, not to mention interac-
tively. The reason is, that for a given functionf(x) (here:
the input dataset) and a transfer functiong(x) the inte-
gral

∫
g(f(x))dx can not be decomposed resp. factorized in

general into a pre-transformed variantF{f} and a fast mod-
ifiableF{g}, whereF{·} denotes the Fourier transform.

In this work we show, that latter problem is solvable for
a special class of transfer functions, namely

gτ (u) =
{

u if u ≥ τ
0 otherwise

}
, (1)

i.e., gτ (u) is a threshold function with iso-valueτ . This
particular class of functions occurs e.g. in medical appli-
cations, where soft tissue with low opacity has to be sep-
arated from bone with high opacity in X-ray-like render-
ings. Our method allows for manipulating theτ -value inter-
actively during rendering.

Our paper is organized as follows. In section 2, we re-
view previous work. In section 3 mathematical foundations
for our actual method are derived. The resulting algorithm
is discussed in section 4, which is further analyzed in sec-
tion 5. Sections 6 and 7 are dedicated to discussing the re-
sults. Throughout the text, we use the notation in figure 1.

2. Previous Work

2.1. Fourier Volume Rendering

FVR was first proposed by Levoy [12] and Malzben-
der [14]. Levoys paper contains a rich variety of shading



Bi(x), Bτ
i (x) Basis function without/with dependence onτ

δ(t) Dirac delta function

δl,m Kronecker symbol,

{
1 if l = m
0 otherwise

Fn{},F −1
n {} nD forward/backward Fourier transform

H(x) Heaviside step function,

{
1 if x ≥ 0
0 otherwise

gτ (u) Transfer function
g � f Convolution ofg with f
Nxyz Normal at surface/voxel position(x, y, z)
R Residual energy
τ ∈ [0, 1] iso-value
uxyz ∈ [0, 1] scalar/opacity value at voxel position(x, y, z)
W Energy in the fourier expansion spectrum
W (k) Energy in the fourier coefficientk
ω = (θ, φ) Solid angle
Ylm(ω) Spherical harmonics
z, z Variablez and its complex conjugate

Figure 1. Notation.

models for FVR: X-rays with depth cueing, X-rays with di-
rectional shading and both simultaneously. Depth cueing
has a general applicability for FVR, since it can be inte-
grated into most FVR frameworks and it substitutes occlu-
sion effects in an acceptable way. In his conclusions, Levoy
discusses three strategies for applying segmentation opera-
tors on the dataset, which are important in our context. The
operator must be expressible as one of the following forms:

1. linear combination of basis functions: the operator
has the form

g(x) =
n∑

i=1

aiBi(x), (2)

where an application of the Fourier-transform on the
datasetf(x) yields

F{g(f(x))} =
n∑

i=1

aiF{Bi(f(x))}, (3)

Thusn pretransformed volumes have to be initiated to
perform segmentation.

2. convolution: Given a convolution kernelg(x) and a
volumef(x), the well-known Fourier convolution for-
mula states, that

F{g(x) � f(x)} = F{g(x)} · F{f(x)} (4)

This means, that during the slicing phase, the single
samples inF{f(x)} are weighted width samples in
F{g(x)} at the same sampling position.

3. multiplication by a function of position in the spa-
cial domain: Analogously, a multiplication ofg(x)

with f(x) corresponds to a convolution in the Fourier
domain:

F{g(x) · f(x)} = F{g(x)} � F{f(x)} (5)

For these type of operators, Levoy discusses, how one
can get rid of the expensive convolution by smartly
choosing the resampling filter for the slice extraction
phase.

Our method has some resemblance with the first of the
three types of segmentation operators mentioned above, but
there is a fundamental obstacle, which makes an direct ap-
plication for our problem impossible. In equation (1), we
assume function, which is actually bivariate, since it is not
only depending on the argumentu, but also on the thresh-
old valueτ . Application of the FFT would lead to

F{gτ (f(x))} =
n∑

i=1

aiF{Bτ
i (f(x))}, (6)

i.e., the parameterτ can not be pulled out of the argument
of the Fourier transform and hence all datasets running over
i have to be retransformed for a change ofτ . The main
achievement of this paper is to resolve this conflict and to
present a smart factorization, where the dependency of the
argument ofF{} from τ can be removed in order to achieve
interactive manipulation ofτ .

Malzbender’s paper, in contrary, focusses on signal-
theoretical aspects, like derivation of FVR from the
Projection-Slice theorem, the choice of resampling fil-
ters and antialiasing. The latter two issues are in particular
important for the quality of the renderings, as larger re-
sampling filters with higher accuracy have to be traded for
rendering speed.

Gross et al.[5] proposed two types of Wavelet-based vol-
ume rendering methods: (i) Wavelet Space Ray-Tracing
and (ii) Wavelet Based Volume Splatting (WS). By com-
bining FVR and Wavelets, WS can circumvent expensive
interpolation filters used in pure FVR. Westenberg and
Roerdink [19] extended the idea of WS to Fourier-Wavelet
Volume Rendering (FWVR). The benefit of using these
methods over FVR are their capability of allowing local
level-of-detail.

Totsuka and Levoy [18] introduced shading for FVR,
which was later improved in quality by Entezari et al. [3].
The method of Entezari et al. has great similarities with
our algorithm. While they derive a method for interactively
shading the volume using SHRMs, our contribution is tai-
lored to the classification model described above. Although
there is an analogy between their method and ours, our
derivation is significantly different and does not require
lighting calculations with spherical harmonics expansions.

Kaneda et al. [7] developed a method for fast volume
rendering using adjustable color maps. Although they pro-



posed a spacial-domain method, their core has resemblance
with our approach and is therefore discussed in subsec-
tion 5.2.

2.2. Transfer Functions

Transfer functions (TFs) form a classification technique
for replacing voxel values locally in the dataset according to
some user-defined and/or dataset specific criterion. We now
review common TFs used so far for ordinary volume ren-
dering.

In its most simple form, a 1D TF defines the replace-
ment of a scalar value by another one. Due to its limited ap-
plicability, the importance of higher dimensional TFs was
soon recognized. Levoy [11] used 2D TFs, with the opac-
ity value in the first and the gradient magnitude in the sec-
ond dimension. Multidimensional TFs [6, 8, 10, 20] use ad-
ditionally high-order derivatives and curvature of the scalar
function representing the data.

The process of finding good transfer functions can be
structured in a variety of ways. Automatic methods are more
restricted to the coloring of the single RGB channels, as pro-
posed by Muraki et al. [16], who use a radial basis function
network in combination with independent component anal-
ysis (ICA) to accomplish the aforementioned task. Semi-
automatic resp. user-driven methods assist the user in find-
ing TFs by giving valuable hints during exploration. Exam-
ples are (i) the Contour Spectrum [2], which visually sum-
marizes the space of iso-surfaces in terms of some met-
rics, (ii) the Design Gallery [15], which creates an inter-
face to the space of possible transfer functions, (iii) the tech-
nique of König and G̈oller [9], where thumbnail renderings
give information about the spaces of data values, colors and
opacity, and (iv) the ISpace [17] technique, where classifi-
cation is reduced to interactive clipping in ICA space.

The advantage of above methods is that they are easy
to map onto the graphics accelerator. Unfortunately, all of
these methods work in the spacial domain, i.e., none of the
methods could be integrated into the FVR framework so far
in order to make interactive exploration possible.

3. Factorization of the transfer function

In this section, we derive a basic rendering equation suit-
able for use in FVR.

First, assume we have given a voxel position (x,y,z), the
respective scalar valueuxyz there and the transfer func-
tion in equation (1). The new voxel value after applying the
transfer function is

gτ (uxyz) =
{

uxyz if uxyz ≥ τ
0 otherwise

}
= uxyzH(uxyz−τ).

(7)

One objective of this chapter is to rewrite the Heaviside
function in the preceding equation in a manner, that it can
be approximated by Fourier series. We are then in the po-
sition to factorize the step function into components, which
only depend onuxyz andτ . When applying the FFT, the fac-
tor containinguxyz can be pretransformed and scaled by the
factor containingτ .

First, we concentrate ourselves on the step func-
tion H(uxyz − τ). Assumingτ ∈ [0, 1], we can writeH as
a convolution with the Dirac-function:

H(uxyz − τ) =
∫ 1

0

δ(s − τ)H(uxyz − s)ds (8)

We now want to approximate the two factors in the integral
in terms of Fourier series expansions. To apply these repre-
sentations later on, we take care of the integral to run over
the whole period[0, 2π]:

H(uxyz − τ) =
∫ 2π

0

δ(
s

2π
− τ)H(uxyz − s

2π
)ds (9)

Next, we develop the Heaviside and the Dirac-delta function
into Fourier expansions with the general representations

H(uxyz − s

2π
) =

∞∑
k=−∞

ck(uxyz)eiks (10)

and

δ(
s

2π
− τ) =

∞∑
l=−∞

dl(τ)eils (11)

(Please note, that Fourier series expansion assumes periodic
functions with period[0, 2π]. This issue is picked up is sec-
tion 5). When plugging equations (10) and (11) into equa-
tion (9), we obtain due to the orthogonality relation of the
Fourier basis functionseiks andeils

H(uxyz − τ) =
∞∑

k=−∞

∞∑
l=−∞

ckdl

∫ 2π

0

eis(k+l)ds

= 2π

∞∑
k=−∞

∞∑
l=−∞

ckdlδk,l

= 2π

∞∑
k=−∞

ckdk (12)

The coefficientsck anddk can be found canonically by in-
tegrating the involving functions against the Fourier basis
functions over the range[0, 2π]:

ck(uxyz) =
1
2π

∫ 2π

0

H(uxyz − t

2π
)eiktdt (13)



and

dk(τ) =
1
2π

∫ 2π

0

δ(
t

2π
− τ)eiktdt (14)

Latter equation can easy be evaluated using the substitution
s := t

2π and the definition of the Dirac-delta function:

dk(τ) =
1
2π

∫ 2π

0

δ(
t

2π
− τ)eiktdt

=
∫ 1

0

δ(s − τ)ei2πksds

= ei2πkτ (15)

For ck, a case differentiation is required. Fork = 0 and the
same substitutions := t

2π ,

c0(uxyz) =
1
2π

∫ 2π

0

H(uxyz − t

2π
)dt

=
∫ 1

0

H(uxyz − s)ds = uxyz (16)

since0 ≤ uxyz ≤ 1. Fork �= 0 we have analogously

ck(uxyz) =
1
2π

∫ 2π

0

H(uxyz − t

2π
)eiktdt

=
∫ 1

0

H(uxyz − s)e2πiksds (17)

A further substitutionr := uxyz − s removes the depen-
dency of the integrand fromuxyz:

ck(uxyz) = −
∫ uxyz−1

uxyz

H(r)e2πik(uxyz−r)dr

= e2πikuxyz

∫ uxyz

uxyz−1

H(r)e−2πikrdr

= e2πikuxyz

∫ uxyz

0

e−2πikrdr (18)

The latter step is valid, since−1 ≤ uxyz − 1 ≤ 0 according
to our assumption. Finally,

ck(uxyz) =

{
uxyz if k = 0
i(1−e2πikuxyz )

2πk otherwise
(19)

Now that we have closed forms forck(uxyz) anddk(τ), we
can expand equation (7) as follows:

gτ (uxyz) = uxyzH(uxyz − τ)

= 2πuxyz

∞∑
k=−∞

ck(uxyz)dk(τ) (eq. (19), (15))

At this point, we can apply the 3D Fourier transform in an
efficient way, since the variablesuxyz andτ are separated in
the arguments ofck anddk and the Fourier transform runs
only over arguments with the scalar valueuxyz involved:

F3{gτ (uxyz)} = 2π
∞∑

k=−∞
dk(τ)

· F3{uxyzck(uxyz)} (20)

For practical issues, it is understood that only a finite
number of summands can be used. In the appendix, we
show, that the energy contained in the summand decays
quadratically with growing|k|, so a quite precise approx-
imation of the equation can be found by using only a few
summands involvingck(uxyz) anddk(τ).

4. Algorithm

From equation (20), the final algorithm can be con-
cluded. We assume, thatD(x, y, z) is the input dataset and
−t ≤ k ≤ t for some smallt.

4.1. Preprocessing

P1 Initialize scalar datasetsVk by setting

Vk(x, y, z) := D(x, y, z)ck(D(x, y, z))

P2 Apply the 3D forward FFT on eachVk(x, y, z), result-
ing in V̂k(x, y, z).

4.2. Rendering

During runtime, the following steps are executed for a
new viewing direction

−→
V :

R1 Sample a sliceSk(x′, y′) through the origin of the

transformed dataset̂Vk(x, y, z), perpendicular to
−→
V .

R2 Weight each sample pointSk(x′, y′) by 2πdk(τ).

R3 Calculate a 2D imageI(x′, y′) by pixelwise accumu-
latingSk(x′, y′).

R4 F−1
2 {I(x′, y′)} is the desired result for the given view−→

V .

5. Analysis of the principal equation

5.1. Robustness aspects

During our derivations in the previous section, we have
tacitly assumed, that the expansion of the Fourier coeffi-
cients takes place over periodic functions with period2π.
This is awkward with respect to the Heaviside function



H() in equation (18), since we cannot actually realize a
step-function, but only a window-function with a only a
finite range being unequal to zero. Since only half of the
range[0, 2π] is one, and zero, otherwise, we have repeti-
tion artifacts, whenuxyz is shifted. We overcome this bur-
den by pre-scaling the scalar valuesuxyz andτ to the do-
main [0, 1

2 ]. Since we already work with float precision, we
do not loose accuracy by applying this scaling.

It is further important to note, that complex summands
appear on the right-hand side of equation (20), although on
the left-hand side a real function is presumed. To guaran-
tee a real-valued result, the indexk in the approximation of
the sum in equation (20) should run from−t to t, since sum-
mands fork and−k sum up to real-valued result (we only
considerk �= 0 here):

ckdk+c−kd−k =
sin(2πkτ + 2πkuxyz) − sin(2πkuxyz)

πk

5.2. Comparison with other methods

An interesting point in our equation is its similarity to the
method of Entezari et al. [3]. The authors deduce an equa-
tion for diffuse lightingE(x, y, z) of the volume at the po-
sition (x, y, z) using spherical harmonicsYlm:

E(x, y, z) =
∑

l

∑
m

√
4π

2l + 1
Ylm(ωL)Ylm(ωNxyz

),

(18)
whereωL is the direction of thedirectional light source and
ωNxyz

gives the direction of the normal vector at the voxel
position(x, y, z). In a similar fashion, the 3D FFT opera-
tor F3{} can be applied here, where the argument ofF3{}
only depends onωNxyz

. While the basic concept of our ap-
proach using the factorization resembles that of the afore-
mentioned approach, our main point is to tailor the base
equation to classification rather than illumination.

Kaneda et al.[7] presented a ray-casting approach which
allows for fast modification of color maps. The method
works in two phases. First, during preprocessing, some ba-
sis images are calculated for a particular perspective, hav-
ing a color map-independent representation of the view. In
the second phase, the basis images are composed, where
each image is weighted by Fourier moments. These weights
can be derived - and thus, modified quickly- by decom-
posing the color maps into Fourier coefficients during ren-
dering. The underlying ray-casting integral containing the
color map function therefore can be factored out of the in-
tegral and calculated separately, as in our method. Note that
the entire approach is a physical domain, rather than a fre-
quency domain one.

We further investigated the decomposition of the transfer
function in equation (7) by SVD (singular value decomposi-

tion). Assuming|G| (e.g.,|G| = 256 for 8Bit accuracy) dis-
tinct values in the representation of the scalarsuxyz andτ ,
we can represent the transfer function (7) in form of a ma-
trix A, where

Aij =
i

|G|H(
i − j

|G| ). (18)

Using SVD, this matrix can be decomposed into three ma-
tricesU , V and a diagonal matrixD, whereA = UDV T .
A then can be expanded into a sum of outer products:

A =
|G|∑
k=1

DkkUikVjk (18)

Since we assume our scalar valuesτ anduxyz to be quan-
tized, we can define functions

fτ (k) = U(|G|τ),k and

fuxyz
(k) = V(|G|uxyz),k

Similar to our approach, this yields

F3{gτ (uxyz)} =
|G|∑
k=1

Dkkfτ (k)F3{fuxyz
(k)} (16)

Equality also generally holds when thek sums up to|G|,
but one might expect acceptable results for for the first few
summands.

We have tested this approach and found the results com-
parable with the Fourier series approach. According to
our experience, the Fourier based approximation allows for
somewhat sharper discrimination between those voxel val-
ues to be preserved and those to be discarded from the ren-
dition. Consequently, no unwanted portions of the volume
will be rendered, whereas the desired ones will appear in the
rendition. Therefore, we used the Fourier-based approach to
generate our results.

6. Results

We have tested our algorithm on a Windows XP PC with
a 3.06 GHz Intel PIV processor and 1GByte RAM with
a variety of datasets, amongst other things with the Vis-
ible Female [1], the engine and the foot (obtained from
www.volren.org). In order to reduce memory require-
ments, we have downsampled the datasets to voxel sizes
1283, 1282 · 55 and1283, respectively. Our software solu-
tion of the renderer is based on the FFTW [4] library, since
it exploits the hardware environment in an optimal way. Our
experiments shown in fig. 2 were carried out with 9 Fourier
series coefficients. Preprocessing required about 35 seconds
for any of the volumes, whereas rendering times were about



3fps for all of the datasets, for arbitrary views and for arbi-
trary window sizes, independently, ifτ was altered or not.

In rows (1) and (2) of figure 2, we show an exploration
process of the Visible Female using our method for the
front and the side views, respectively. As the iso-valueτ in-
creases, soft matter, like skin and muscles disappear and the
user can isolate skull and upper spinal court. This complies
well to our expectations, since opacity values for bones and
for the skull are distributed more in the higher part of the
domain of iso-values.

These qualitative aspects can be confirmed on the foot
dataset (fig. 2, row (3)), where an increasing ofτ removes
intensities around the bones of the toes.

We further investigated the well-known engine dataset
(fig. 2, row (4)). As expected, for high iso-valuesτ , only
the valves and one side of the outer part of the engine re-
main after classification.

As it is evident from the examples, the overall energy
in the projections decreases (i.e., the renderings appear
darker), as the iso-valueτ grows. This correct behavior of
the algorithm is due to the tendency, that more samples
are excluded from integration during projection, asτ is in-
creased. For datasets with uniform probability distribution
of the opacity values, this effect is continuously percepti-
ble, when the threshold increases.

It is simple to deduce similar TFs using our technique. If
we like to have a TF which replaces scalar values by zero
above a certain thresholdτ , only the respective coefficients
ck have to be altered, which can be done during runtime.
We merely have to change the step function in equation (7)
in order to obtain the desired coefficients.

Currently, our method suffers from somewhat high mem-
ory requirements, in the same fashion as the method of En-
tezari et al. We can further lower memory demands by us-
ing 16 Bit instead of 32 Bit precision for the representa-
tion of values in the Fourier domain, as suggested by [18]
and [13]. However, FFTW currently does not support 16 Bit
floats to our knowledge.

7. Conclusions and Future Work

We have introduced a special class of transfer functions
for Fourier Volume Rendering, which allows interactive in-
tegration of samples values greater than a given thresholdτ
during projection. This opens fundamentally new perspec-
tives in FVR classification, since earlier approaches were
strongly restricted to low-level segmentation operators, as
expressible by linear combination of some basis functions,
convolutions or multiplications. Our method, in this sense,
is a non-linear operator, and allows the interactive classifi-
cation not only in dependence of position, but also of the
voxel value itself. For transfer functions not matching the
described ones, however, classification still has to be de-

ferred to the preprocessing stage and interactive manipula-
tion is not possible.

Our method is of particular interest for medics and physi-
cist who work with order-independent projections of the in-
put dataset and who like to classify structures according
to the given scheme interactively. As for every FVR tech-
nique, our method guarantees the usualO(N2logN) ren-
dering time complexity, which is in particular attractive with
respect to rendering speed in future, when dataset sizesN3

increase. Concerning hardware prerequisites, the proposed
technique is useful on platforms were hardware accelera-
tion is only weakly or not present (like PDAs), since the en-
tire algorithm runs on the CPU.

Our FVR approach leaves scope for further development,
especially for other TF types. We are convinced, that it will
be possible to compose more sophisticated -even though not
universal- TFs by our method in future. In all we strongly
believe to have found a new directive in FVR, which makes
exploration of datasets in Fourier space with its computa-
tional advantages a more viable and attractive alternative to
spacial domain methods.

A. Appendix

A.1. Approximation accuracy

To estimate the error we make by using only a few sum-
mands in equation (20), we investigate the energy con-
tained in the single coefficientsck anddk as follows. Let
W (k) be the energy of summandk. We obtain by defin-
ing a := 2πkuxyz andb := 2πkτ for k > 0:

W (k) := (uxyzckdk)(uxyzckdk)
= u2

xyz(ckck)(dkdk)
= u2

xyz(ckck)(eibeib) = u2
xyz(ckck)

= u2
xyz(

i(1 − eia)
2kπ

i(1 − eia)
2kπ

)

= u2
xyz

1
4π2k2

((1 − eai)(1 − eai))

= u2
xyz

1
2π2k2

(1 − cos(a))

≤ 1
π2k2

∈ O(
1
k2

) (11)

latter inequality holds, since0 ≤ uxyz ≤ 1. Thus the en-
ergy of the summands decays quadratically with increasing
k. Since

∑∞
k=1

1
k2 = π2

6 , we can estimate aworst-case up-
per bound for the residual energy of our entire expansion
by calculating



R := u2
xyz + 2(

∞∑
k=1

1
k2

)
1
π2

− (u2
xyz + 2(

t∑
k=1

1
k2

)
1
π2

)

=
1
3
− 2

π2

t∑
k=1

1
k2

(11)

where t > 0 defines the number of coefficients. For in-
stance, fort = 6, we have aworst-case error of about9.3%.
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Figure 2. Rendering results. Rows (1) (front view) and (2) (side view) show a classification pro-
cess, exemplified on the VISIBLE FEMALE dataset. The images were generated for iso-values τ =
10
255 , 30

255 , 50
255 , 70

255 . As can be seen from the examples, matter of high density like bones are properly
separated from those of lower ones, like soft matter, as skin, etc. Row (3) shows the foot dataset, for
iso-values τ = 10

255 , 20
255 , 30

255 , 40
255 . The removal of soft matter is here especially remarkable in the up-

per half of the images. Row (4): Engine dataset for τ = 40
255 , 80

255 , 120
255 , 160

255 . For τ = 160/255, only the
valves and the side part of the engine remain visible.


