
Fast Environmental Lighting for Local-PCA Encoded BTFs

Gero Müller, Jan Meseth, Reinhard Klein
University of Bonn

Institute of Computer Science II
Römerstraße 164

D-53177, Bonn, Germany
{gero,meseth,rk}@cs.uni-bonn.de

Abstract

Rendering geometric models with complex surface
materials in arbitrary lighting environments is a chal-
lenging problem. In order to relight and render ge-
ometries covered with complex, measured BTFs two
problems have to be addressed: The memory problem
resulting from the large size of the measured BTF data
and the light integration problem resulting from sum-
ming up the contributions from all measured light-
sources.

In this paper we describe how highly efficient BTF
compression methods like Local-PCA and suitable
representations of environmental light based on
Spherical Harmonics can be combined leading to fast
environmental lighting for efficiently encoded BTFs.
As a side effect the method supports Precomputed Ra-
diance Transfer.

1. Introduction

Realistic and efficient rendering of complex meso-
structure is still a challenging task in today’s computer
graphics. Even for relatively flat materials like the
wallpaper depicted in Figure 1 the changes in appear-
ance for different light and view directions can be
enormous. A full synthetic simulation of such a mate-
rial with the classic rendering approach, i.e. explicit
geometric modeling on a macro-scale and reflectance
modeling on a micro-scale, seems impossible because
of its complexity in modeling and computation.

This is the place where image-based rendering fits
in: Instead of explicitly modeling reality, data captured
from reality is used and new images are generated
from that data. While applications of purely image-
based techniques like Light Field Rendering (e.g. [13])
are still limited to special domains, combinations with
geometry based approaches have made their way even
into of-the-shelf consumer graphics hardware. And in
the case of rendering complex meso-structure, texture-

mapping is nowadays the technique of choice and has
introduced a new level of reality into computer graph-
ics.

But of course simple textures do not capture light-
and view-dependent effects like shadowing, masking,
subsurface-scattering etc. These effects are included in
the Bidirectional Texture Function (BTF), a 6-
dimensional texture representation introduced by Dana
et al. [3] which also depends on light- and view-
direction.

Figure 1. Six views of a wallpaper from vari-
ous view and light directions. The appearance
of the material changes drastically which can-
not be reproduced by simple material repre-
sentations like textures. The BTF correctly
represents and reproduces these effects.

In most current approaches the BTF is acquired by

a series of images of a flat material probe taken under
different light- and camera configurations. Renderings
containing view- and light-dependent effects can sim-
ply be obtained by choosing the images corresponding
to the current view- and light-directions. In order to
achieve smooth images linear interpolation between
neighboring measurements should be done and the
contributions from all light sources have to be com-

bined. Figure 2 shows an example. Obviously there
remain two big problems with this kind of approach:

1. Memory requirements – Typical BTF-samplings
contain thousands of images. This restricts the
number of materials in a scene and hampers real-
time rendering.

2. Relighting the BTF with complex and large light
sources is too expensive for real-time applications
since the contributions from all measured light di-
rections have to be combined.

Recently several papers have been published that
address the first problem by providing efficient com-
pression schemes that allow for fast and even real-time
BTF-rendering with acceptable error on programmable
graphics hardware (e.g. [4][15][16][26][19]). Unfortu-
nately, they either omit environmental lighting or
achieve insufficient rendering quality. Complex re-
lighting of BTFs was addressed using Spherical Har-
monics but published approaches either targeted pure
bi-directional reflectance distribution (BRDF) render-
ing (e.g. [21][23]) or restricted the BTF to patches of
small extent since no BTF-compression was applied
[25]. This prohibits materials that require high spatial
resolution due to both high- and low-frequency surface
structure like the wallpaper in figure 1.

In this paper we propose compression with Local
Principal Component Analysis (LPCA) and relighting
with Spherical Harmonics addressing both the memory
and the relighting problem. As a side effect we can
combine BTF-rendering with precomputed radiance
transfer enabling also large-scale shadows and inter-
reflections.

2. Related Work

2.1 Image Based Rendering

Research in the area of image-based rendering
nearly always deals with the two problems that we face
as well: finding a way to compress the huge amounts
of image data without introducing too much error and
generating new images as fast as possible.

In their pioneering work Levoy and Hanrahan [13]
introduced light-field rendering: an efficiently render-
able 4D representation mainly used for complex real-
world objects. They used vector quantization (VQ) and
Lempel-Ziv entropy encoding for the compression.
Wong et al. [27] addressed relighting of light fields
encoding the light-dependence for every fixed view
with spherical harmonics. Miller et al. [18] parameter-
ized light fields over surfaces (introducing Surface
Light Fields) and encoded the images JPEG-like with a
discrete cosine transform. In following work surface
light fields were compressed using tailored versions of
either VQ or PCA in order to handle the irregular sam-
pled data [28] and by PCA applied to subsets (around a
vertex of the parameterized mesh) of the resampled
data [2]. The results vary in approximation quality and
rendering speed.

While light fields allow renderings from novel
viewpoints, reflectance fields enable rendering under
arbitrary lighting conditions. Debevec et al. [5] ac-
quired and rendered surface reflectance fields from
human faces. Interactive generation of novel view-
points was made possible by exploiting a human skin
reflectance model. Matusik et al. [14] compressed re-

Figure 2. Comparison of simple texturing and BTF-rendering: On the left only one photo of a cor-
duroy material was wrapped around the cloth. On the right a corduroy BTF was used.

flectance fields by block-wise PCA. The Polynomial
Texture Map by Malzbender et al. [17] efficiently ap-
proximates and compresses nearly planar and diffuse
surface reflectance fields by fitting a polynomial to
each texel.

Furukawa et al. [6] extended surface light field ren-
dering by (sparsely) sampling the whole angular space.
To handle the increased amount of data, they used a
generalization of matrix factorization called Tensor
Product Expansion. The full angular space is also cov-
ered by the method of Lensch et al. [12] who used
conventional BRDF-modeling in combination with an
iterative clustering procedure to cope with insufficient
sample density.

2.2 Real-Time BTF-Rendering

BTF-rendering can be understood as rendering of
spatially varying materials under varying light and
view conditions. A first real-time algorithm approach-
ing the task of BTF-rendering was published by Kautz
and Seidel [8]. They introduced techniques for evaluat-
ing spatially varying BRDFs on graphics hardware by
factoring the BRDFs into two-dimensional functions
and storing the values in textures that are recombined
for rendering. The technique was recently improved by
Suykens et al. [26] who achieve good results for sim-
ple synthetic BTFs. McAllister et al. [15] published a
different method exploiting graphics hardware that
approximates the BTF by pixelwise Lafortune [10]
models. They achieve good results for approximately
flat materials with highly specular behavior. One year
earlier already, Daubert et al. [4] published a similar
approach in the context of rendering synthetic cloth
BTFs. They additionally modulated the pixelwise La-
fortune models with a view-dependent factor in order
to cope with self-occlusion effects. Unfortunately, their
representation is not as compact at the previously men-
tioned ones. Meseth et al. [16] proposed an improved
material representation based on reflectance fields
which increases the real-time rendering quality of ma-
terials, especially if they feature high depth variation.
They as well suffer from insufficient data compression.
A different approach was introduced by Sattler et al.
[22], who utilize PCA to compute Eigen-Textures that
are composed during runtime based on view- and light-
dependent weights. While it is capable of producing
photo-realistic renderings, it reduces the huge amounts
of data contained in a BTF just by a small factor. The
method was improved in terms of memory require-
ments and approximation quality by an approach of
Müller et al. [19]. They perform clustering of the spa-
tially varying BDRFs by employing LPCA in order to
compute Eigen-BRDFs.

2.3 Real-Time Environmental Lighting

Real-time rendering of geometric models with com-
plex surface materials in environments with arbitrary
lighting situations has been an area of active research
for some time already. The approaches of Heidrich and
Seidel [7], Kautz et al. [9] and McAllister et al. [15]
assume fixed BRDFs (e.g. Phong or Lafortune) and
tackle environmental lighting by prefiltering the envi-
ronment with appropriate kernels. Unfortunately their
methods achieve real-time frame rates for fixed light-
ing settings only and are restricted to rather simple
material representations. A more general technique
which handles arbitrary isotropic BRDFs was intro-
duced by Kautz and McCool [8]. Although it can han-
dle BRDFs of arbitrary complexity in principle, com-
plex BRDFs require extensive run-time computations
in order to achieve high quality results. In addition,
prefiltering times are quite high. A more efficient ap-
proach was presented by Latta et al. [11] which allows
arbitrary isotropic BRDFs as well. It reduces the
evaluation time at the cost of extensive precomputa-
tions which practically prohibits dynamic changes of
the lighting situation. These overheads can efficiently
be reduced by projecting the environmental light into a
Spherical Harmonics basis, which has been done by
several recent publications ([20][21][23]). Although
real-time rendering can be achieved for low-frequency
environments only, the results look very realistic. Un-
fortunately, these approaches cannot simply be applied
to BTFs. Sloan et al. [25] presented such a method but
it is limited to BTFs of rather small spatial extent.
They also included Precomputed Radiance Transfer as
introduced in [23] in order to support large-scale shad-
ows and inter-reflections.

3. BTF Representation

As depicted in figure 3, a sampled BTF can either
be interpreted as a collection of discrete textures:

{ }() ()
() : ()Tex T

∈∆
= v,l v,l

BTF x x

where ∆ denotes the set of discrete measured view-
and light-directions, or as a set of tabulated BRDFs:

{ } 2(,) : (,)Brdf I
B

∈ ⊂
= x x

BTF v l v l

Please note, that these BRDFs do not fulfill physi-
cally demanded properties like reciprocity. In special
they already contain a factor (n⋅l) between incident
direction and surface normal. This is also nicely illus-
trated in figure 3.

The BTF-data employed in this work is a high-
quality RGB-sampling with |∆|=81×81 and

|I|=256×256 leading to more than 1.2GB of data (sam-
ples available at http://btf.cs.uni-bonn.de). In order to
reduce the memory requirements we apply the LPCA
algorithm to BTFBrdf as in [19]. The resulting com-
pressed representation has the form

{ } 2

c
Brdf x I

B
∈ ⊂

≈ xBTF

where

() () , () , ()
1

,
B

B B B B

c
c

k k i k i k
i

B B B B E E
=

= + − ⋅∑x x x x x x

denotes the reconstruction of the BRDF at texel x
from cB components of the PCA applied to the BRDFs
in cluster kB(x) looked up from texel x. The Ei,k are the
so called Eigen-BRDFs (i.e. the PCA-components in
cluster k) and the mean is denoted by ()BkB x . Adjusting

the number of components cB and the number of clus-
ters |kB| allows for finding a flexible trade-off between
memory-requirements, approximation quality and ren-
dering speed. For real-time rendering cB should be
chosen as small as possible (cB<8), since rendering
time depends on the number of components that have
to be summed up. Depending on the material complex-
ity compression ratios between 1:50 and 1:250 intro-
ducing a relative error of only about 2% can be
achieved.

vy

x l

... ...

Figure 3. Two arrangements of the BTF-data:
As set of images (left) and as set of BRDFs
(right).

4. BTF Relighting

Relighting BTF-covered geometry with an arbitrary
and distant illumination environment Li requires com-
puting the lighting integral

() BTF(()) (())
i

r iL T L d
Ω

= ⋅∫ pp, v p , v, l R l l (1)

over the incident hemisphere Ωi at surface point p.
Here T denotes a texture coordinate mapping from the
surface into the BTF and Rp represents a rotation ma-
trix from the local coordinate frame at p into global
coordinates.

4.1 Directional Light Basis

Since the BTF-dataset represents the material's re-
sponse to a set Λ of directional light sources lj for
some different views, this integral always reduces to a
sum via projecting the illumination into this finite light
basis and summing up the corresponding measure-
ments with the resulting weights:

()
| |

1

1
() BTF () , () ,r j i j

j
L T L

Λ
−

=

= ⋅∑ pp, v p , v R l l

For environments containing large area light
sources the evaluation of this sum is obviously rather
inefficient since many weights will be non-zero. So
this approach is only suitable for rendering of scenes
containing only a few directional or point light
sources.

4.2. Spherical Harmonics Light Basis

Large and slowly varying light sources are much
better represented in a low-order Spherical Harmonics
(SH) basis expansion. Therefore we represent the inci-
dent lighting Li and the BTF for each texel x and view
direction v in an n-th order (typically n=5) SH-basis
expansion:

2

2

() ()

BTF() ()

n

i j j
j

n

j j
j

L a y

b y

≈

≈

∑

∑ x,v

l l

x, v, l l

The projection coefficients aj and jbx,v can be ob-

tained via numerical integration. Due to the ortho-
normality of the SH basis the lighting-integral now
reduces to a simple dot product:

, ()() , ()T
r iL = v p

pp, v b M a (2)

By ai and , ()Tv pb we denote the vectors of stacked
SH coefficients and Mp denotes the high-dimensional
SH-rotation matrix that rotates the lighting environ-
ment into the local coordinate frame. As in [23] this
matrix could also represent a transfer matrix encoding
for example large scale shadows and inter-reflections.

Sloan et al. [25] published a BTF rendering algorithm
based on this formulation.

4.3 Combining Clustered Transfer and LPCA
encoded BTFs

Unfortunately the approach in [25] cannot easily be
applied to BTFs that require high spatial resolution like
our measured ones.

The first problem is that we need to store about 130
million SH-coefficients per channel for a fifth order
SH-expansion of our measured BTFs resulting in al-
most 400MB storage using only one byte per coeffi-
cient. The second problem of the method is the bottle-
neck formed by transferring incident lighting into the
local coordinate frame, which has to be done on the
CPU for every mesh vertex.

We propose LPCA encoding for the BTF coeffi-
cients to tackle the first problem. Instead of storing
SH-coefficients for every texel only the Eigen-BRDFs
have to be represented in the SH-basis.

The second problem can be solved by applying
LPCA also to the transfer matrices as done in [24].
Then transferring incident lighting can be handed over
from CPU to GPU decoupling rendering speed from
the size of the mesh.

A straight-forward implementation would now sim-
ply combine the algorithms from [24] [25] and [19].
Unfortunately the costs still remain relatively high: For
every pixel and every frame – even for fixed lighting –
(cB+1) dot products between n2-component vectors
(view-dependent BTF components and lighting) have
to be computed und summed up with the correspond-
ing weights. Additionally for every vertex the trans-
ferred lighting vector has to be reconstructed and in-
terpolated over the triangle. To avoid this large over-
head we propose an alternative method that allows for
faster rendering with fixed lighting and decouples the
computation of the dot products from screen resolu-
tion. It is based on the LPCA expansion of the transfer
matrices and the BTF.

Expressed in its LPCA basis the transfer matrix Mp
is given by

, , ()
0

M

M

c

j j k
j

α
=

≈∑p p pM m

The view-dependent SH-coefficients for every
BTF-texel can be reconstructed from the mean and
Eigen-BRDF SH-coefficients , Bj k

ve :

,
, , ()

0

B

B

c

j j k
j

β
=

≈ ⋅∑v x v
x xb e

The cluster index look-up is denoted with kM() and
kB() respectively. Now equation (2) can be expressed
in terms of the LPCA components:

, ()

, (), , (()) , ()
0 0

() , ()

 , ()
M B

B M

T
r i

c c

j T m m k T j k i
j m

L

α β
= =

= ≈

∑∑

v p
p

v
p p p p

p, v b M a

e m a
(3)

Equation 3 reduces the computation of the lighting
integral for a fixed lighting environment to a simple
weighted sum of dot products that can be precomputed
independently from screen resolution and mesh-
complexity. The dot products

, , , , ,() , ()
B M B Mm k j k i m k j k iλ =v va e m a

must be recomputed only if the lighting vector ai
changes. Of course the cost for this computation in-
creases with the number of clusters and components
since |kM|*(cM+1) matrix-vector multiplications and
|kB|*|kM|*(cB+1)*(cM+1)*|v| dot products have to be
computed for each color channel. But there is always
the possibility to trade quality for speed simply by us-
ing fewer components. Thus we implemented a simple
adaptive rendering scheme that is described in detail in
the following section.

5. Real-Time Rendering

Rendering meshes covered with LPCA encoded
BTFs in environments with arbitrary lighting (repre-
sented as environment maps) consists of two steps:
precomputing the parameters for the current lighting
situation on the CPU and rendering the mesh using
these parameters.

5.1 Precomputation of PRT Values

The precomputation step has to compute the
abovementioned dot-products and store them in tex-
tures in a format suitable for graphics hardware. We
found parabolic hemispherical maps [7] to be a good
choice since they provide an approximately equal sam-
pling of the hemisphere and since values stored in this
format can easily be interpolated by graphics hard-
ware. That way, interpolation between sampled view-
directions can be achieved. In all our tests a resolution
of 16×16 texels led to satisfying results.

Since current graphics hardware prohibits linear in-
terpolation of floating-point valued textures, we have
to map the high-dynamic range PRT values

, , ,B Mm k j kλ v to 8 bit integers. Since the values differ

significantly but can roughly be categorized into four

Figure 4. Rendering setup of the fragment shaders
categories (one category for m=j=0, a second for m=0
and j≠0, a third for m≠0 and j=0, and a fourth for m≠0
and j≠0), we compute four different scaling values,
apply them to the PRT values before storage in a tex-
ture and send the inverse factors to the graphics board.

5.2 Rendering the Mesh

Rendering the mesh given the precomputed parame-
ters for the current lighting situation is done using a
setup similar to Sloan et al. [24]. The triangles of the
mesh are sorted into bins according to the matrix clus-
ters of the vertices of the triangles (i.e. whenever at
least one vertex of the triangle belongs to the matrix
cluster assigned to the bin, the triangle is inserted into
the bin). For every triangle in every bin we specify
three Boolean parameters indicating whether the verti-
ces belong to the bin’s cluster. At run-time the trian-
gles in the bins are rendered independently. Taking
into account the Boolean parameters, only vertices
belonging to the bin’s rotation cluster contribute to the
partial image produced by the bin. The partial results
are accumulated by setting the blending mode to add.

Other than in Sloan et al. [24] the vertex shader
simply computes the local view direction and sets the
matrix cluster weights to zero if the Boolean parameter
of the vertex is set to false. The majority of computa-
tion is performed in the fragment shaders (see figure 4
for a schematic description). The inputs to the shader
are the texture coordinates of the current fragment, the
local view direction (which is interpolated from the
local view directions at the vertices), the matrix cluster
index and the interpolated matrix cluster weights.
Based on the texture coordinates we lookup the mate-
rial cluster index and the material cluster weights. The
local view direction serves as index into a cube map
that returns corresponding Parabolic Map coordinates.
Based on these coordinates, the matrix and material
cluster indices, we lookup PRT values from a 2D tex-
ture – one for each material and matrix cluster. The
final color of the fragment is computed according to
equation 3.

Please note that figure 4 omits the necessary scaling
of the 8 bit PRT values.

5.3 Results

We implemented the rendering algorithm on an In-
tel Pentium IV 2.6 GHz processor with a GeForce FX
5900 graphics board using OpenGL.

Precomputing the PRT values whenever the light
situation changes takes about 0.8 seconds for 32 matrix
clusters, 8 matrix components, 16 BTF clusters and 4
BTF components – a high-quality setting that suffices
for the tested models and materials. Since this number
is much too high for interactive light changes, we
choose a smaller numbers of components whenever the
model is rotated in the environment (i.e. only 4 matrix
and 1 BTF components). Since the preprocessing time
decreases approximately linearly with the number of
clusters and components, the precomputation time is
reduced so much that even real-time navigation be-
comes possible. Although not implemented in our
framework, this technique naturally applies to varying
lighting environments (e.g. due to video textures) as
well.

Rendering times for the meshes mainly depend on
the screen projection size of the model and on the
number of components (both matrix and BTF) that we
employ. As you can see in the accompanying video,
the frame rates for the high-quality setting are close to
real-time (about 12 fps) even at high resolutions. These
frame-rates can as well be achieved for models cov-
ered with multiple BTFs.

Figure 5 shows two models covered with LPCA en-
coded BTFs which are lit by image-based lighting.
Please note the different colors on the Isis statue result-
ing from the colored lighting environment (i.e. the red-
dish-brown light reflected from the table below the
statue which lights the bottom right part of the statue’s
dress and the rather white, dominating light from the
window which lights the remainder of the statue). Fig-
ure 6 compares the appearance of the Max Planck bust

lit by several different lighting environments and dem-
onstrates the effect of large-scale shadowing.

The memory requirements for the PRT values λ
sum up to about 16.9 MB if 8 bit integer values are
used for each RGB channel (which we found to yield
pleasing results in our tests). This potentially enables
use of multiple BTF materials in scenes lit by envi-
ronmental lighting. Unfortunately, current driver ver-
sions still support automatic filtering of textures with
width and size both being a power of two only al-
though the ARB_texture_non_power_of_two [1] ex-
tension was specified already. We therefore have to
use textures of size 4096×4096 that consume approxi-
mately 50 MB of texture memory. With upcoming
driver versions this necessity will be removed.

6. Conclusions

In this paper we presented a method for efficient re-
lighting of LPCA encoded BTFs. We exploited the
SH-basis for fast evaluation of the lighting integral and
proposed a rendering algorithm that computes substan-
tial parts of a reformulated lighting integral independ-
ent from screen resolution and geometry size. The re-
sults of these computations can be reused to speed up
rendering for fixed lighting. Fast lighting change is

supported by decreasing the quality of the reconstruc-
tion temporarily.
As future work, we will try to better and more flexibly
balance precomputation and rendering time.

7. Acknowledgments

This work was partially funded by the European
Union under project RealReflect (IST-2001-34744).
Special thanks belong to Ralf Sarlette who measured
the BTFs and the UBO HDR environment. We thank
Paul Debevec for providing the other HDR environ-
ments.

8. References

[1] ARB_texture_non_power_of_two.
http://oss.sgi.com/projects/ogl-sample/registry/ARB/
texture_non_power_of_two.txt
[2] Chen, W., Bouguet, J., Chu, M., and Grzeszczuk, R.,
“Light field mapping: Efficient Representation and Hardware
Rendering of Surface Light Fields”, In SIGGRAPH 2002, pp.
447-456, 2002
[3] Dana, K., van Ginneken, B., Nayra, S., and Koenderink,
J., “Reflectance and Texture of Real World Surfaces”, In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 151-157, 1997

Figure 5. On the left a shirt covered with corduroy is shown in the UBO environment. On
the right an Isis statue covered with plasterstone is lit by the kitchen environment.

[4] Daubert, K., Lensch, H., Heidrich, W., and Seidel, H-P.,
”Efficient Cloth Modeling and Rendering”, In 12th Euro-
graphics Workshop on Rendering, pp. 63-70, 2001
[5] Debevec, P., Hawkins, T., Tchou, C., Duiker, H.,
Sarokin, W., and Sagar, M., “Acquiring the reflectance field
of a human face”, In SIGGRAPH 2000, pp. 145-156, 2000
[6] Furukawa, R., Kawasaki, H., Ikeuchi, K., and Sakauchi,
M., “Appearance based object modeling using texture data-
base: Acquisition, compression and rendering”, In 13th Eu-
rographics Workshop on Rendering, 2002
[7] Heidrich, W., and Seidel, H.-P., “Realistic, Hardware-
Accelerated Shading and Lighting”, In SIGGRAPH 1999, pp.
171-178, 1999
[8] Kautz, J., and Seidel, H.-P., “Towards Interactive Bump
Mapping with Anisotropic Shift-Variant BRDFs”, In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pp.
51-58, 2000
[9] Kautz., J., Vázquez, P.-P., Heidrich, W., and Seidel, H.-
P., “A Unified Approach to Prefiltered Environment Maps”,
In 11th Eurographics Workshop on Rendering, pp. 185-196,
2000
[10] Lafortune, E., Foo, S.-C., Torrance, K., and Greenberg,
P., “Non-linear approximation of reflectance functions”, In
SIGGRAPH 1997, pp. 117-126, 1997
[11] Latta, L., and Kolb, A., “Homomorphic Factorization of
BRDF-based Lighting Computation”, In SIGGRAPH 2002,
pp. 509-516, 2002
[12] Lensch, H., Goesele, M., Kautz, J., Heidrich, W., and
Seidel, H.-P., “Image-Based Reconstruction of Spatially
Varying Materials”, In 12th Eurographics Workshop on Ren-
dering, pp. 103-114, 2001
[13] Levoy, M., and Hanrahan, P., “Light Field Rendering”,
In SIGGRAPH 1996, pp. 31-42, 1996
[14] Matusik, W., Pfister, H., Ngan, A., Ziegler, R., and
McMillan, L., “Acquisition and Rendering of Transparent
and Refractive Objects”, In 13th Eurographics Workshop on
Rendering, pp. 267-278, 2002
[15] McAllister, D., Lastra, A., and Heidrich, W., “Efficient
Rendering of Spatial Bi-directional Reflectance Distribution
Functions”, In Graphics Hardware 2002, pp. 78-88, 2002

[16] Meseth, J., Müller, G., and Klein, R., “Reflectance Field
Based Real-Time, High-Quality Rendering of Bidirectional
Texture Functions”, In Computers & Graphics, Volume 28,
pp. 105-112, February 2004
[17] Malzbender, T., Gelb, D., and Wolters, H., “Polynomial
texture maps” In SIGGRAPH 2001, pp. 519-528, 2001
[18] Miller, G., Rubin, S., and Ponceleon, D., “Lazy Decom-
pression of Surface Light Fields for Precomputed Global
Illumination”, In 9th EGWR, pp. 281-292, 1998
[19] Müller, G., Meseth, J., and Klein, R., “Compression and
Real-Time Rendering of Measured BTFs using Local PCA”,
In Vision, Modeling and Visualization, pp. 271-280, 2003
[20] Ramamoorthi, R., and Hanrahan, P., “An Efficient Rep-
resentation for Irradiance Environment Maps”, In SIG-
GRAPH 2001, pp. 497-500, 2001
[21] Ramamoorthi, R., and Hanrahan, P., “Frequency Space
Environment Map Rendering”, In SIGGRAPH 2002, pp. 517-
526, 2001
[22] Sattler, M., Sarlette, R., and Klein, R., “Efficient and
Realistic Visualization of Cloth”, In Eurographics Sympo-
sium on Rendering, 2003
[23] Sloan, P.-P., Kautz, J., Snyder, J., “Precomputed Radi-
ance Transfer for real-time rendering in dynamic, low-
frequency lighting environments”, In SIGGRAPH 2002, pp.
527-536, 2002
[24] Sloan, P.-P., Hall, J., Hart, J., and Snyder, J., “Clustered
Principal Components for Precomputed Radiance Transfer”,
In SIGGRAPH 2003, pp. 382-391, 2003
[25] Sloan, P.-P., Liu, X., Shum, H.-Y., and Snyder, J., “Bi-
Scale Radiance Transfer”, In SIGGRAPH 2003, pp. 370-375,
2003
[26] Suykens, F., vom Berge, K., Lagae, A. and Dutré, P.,
“Interactive rendering of bidirectional texture functions”, In
Eurographics 2003, pp. 463-472, 2003
[27] Wong, T.-T., Heng, P.-A., Or, S.-H. and Ng, W.-Y.,
“Image-based Rendering with controllable illumination”, In
EGWR 1997, pp. 13-22, 1997
[28] Wood, D., Azuma, D., Aldinger, K., Curless, B.,
Duchamp, T., Salesin, D., and Stuetzle, W., “Surface Light
Fields for 3D Photography”, In SIGGRAPH 2000, pp. 287-
296, 2000

Figure 6. From left to right: Plasterstone covered Max Planck bust lit by Galileo, UBO and the
RNL environment. The rightmost image is without large-scale shadows.

