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Abstract 

Rendering geometric models with complex surface 
materials in arbitrary lighting environments is a chal-
lenging problem. In order to relight and render ge-
ometries covered with complex, measured BTFs two 
problems have to be addressed: The memory problem 
resulting from the large size of the measured BTF data 
and the light integration problem resulting from sum-
ming up the contributions from all measured light-
sources.  

In this paper we describe how highly efficient BTF 
compression methods like Local-PCA and suitable 
representations of environmental light based on 
Spherical Harmonics can be combined leading to fast 
environmental lighting for efficiently encoded BTFs. 
As a side effect the method supports Precomputed Ra-
diance Transfer. 

1. Introduction 

Realistic and efficient rendering of complex meso-
structure is still a challenging task in today’s computer 
graphics. Even for relatively flat materials like the 
wallpaper depicted in Figure 1 the changes in appear-
ance for different light and view directions can be 
enormous. A full synthetic simulation of such a mate-
rial with the classic rendering approach, i.e. explicit 
geometric modeling on a macro-scale and reflectance 
modeling on a micro-scale, seems impossible because 
of its complexity in modeling and computation. 

This is the place where image-based rendering fits 
in: Instead of explicitly modeling reality, data captured 
from reality is used and new images are generated 
from that data. While applications of purely image-
based techniques like Light Field Rendering (e.g. [13]) 
are still limited to special domains, combinations with 
geometry based approaches have made their way even 
into of-the-shelf consumer graphics hardware. And in 
the case of rendering complex meso-structure, texture-

mapping is nowadays the technique of choice and has 
introduced a new level of reality into computer graph-
ics.  

But of course simple textures do not capture light- 
and view-dependent effects like shadowing, masking, 
subsurface-scattering etc. These effects are included in 
the Bidirectional Texture Function (BTF), a 6-
dimensional texture representation introduced by Dana 
et al. [3] which also depends on light- and view-
direction. 

 

 
Figure 1. Six views of a wallpaper from vari-
ous view and light directions. The appearance 
of the material changes drastically which can-
not be reproduced by simple material repre-
sentations like textures. The BTF correctly 
represents and reproduces these effects. 

 
In most current approaches the BTF is acquired by 

a series of images of a flat material probe taken under 
different light- and camera configurations. Renderings 
containing view- and light-dependent effects can sim-
ply be obtained by choosing the images corresponding 
to the current view- and light-directions. In order to 
achieve smooth images linear interpolation between 
neighboring measurements should be done and the 
contributions from all light sources have to be com-



bined. Figure 2 shows an example. Obviously there 
remain two big problems with this kind of approach:  

1. Memory requirements – Typical BTF-samplings 
contain thousands of images. This restricts the 
number of materials in a scene and hampers real-
time rendering. 

2. Relighting the BTF with complex and large light 
sources is too expensive for real-time applications 
since the contributions from all measured light di-
rections have to be combined. 

Recently several papers have been published that 
address the first problem by providing efficient com-
pression schemes that allow for fast and even real-time 
BTF-rendering with acceptable error on programmable 
graphics hardware (e.g. [4][15][16][26][19]). Unfortu-
nately, they either omit environmental lighting or 
achieve insufficient rendering quality. Complex re-
lighting of BTFs was addressed using Spherical Har-
monics but published approaches either targeted pure 
bi-directional reflectance distribution (BRDF) render-
ing (e.g. [21][23]) or restricted the BTF to patches of 
small extent since no BTF-compression was applied 
[25]. This prohibits materials that require high spatial 
resolution due to both high- and low-frequency surface 
structure like the wallpaper in figure 1.  

In this paper we propose compression with Local 
Principal Component Analysis (LPCA) and relighting 
with Spherical Harmonics addressing both the memory 
and the relighting problem. As a side effect we can 
combine BTF-rendering with precomputed radiance 
transfer enabling also large-scale shadows and inter-
reflections. 

2. Related Work 

2.1 Image Based Rendering 

Research in the area of image-based rendering 
nearly always deals with the two problems that we face 
as well: finding a way to compress the huge amounts 
of image data without introducing too much error and 
generating new images as fast as possible. 

In their pioneering work Levoy and Hanrahan [13] 
introduced light-field rendering: an efficiently render-
able 4D representation mainly used for complex real-
world objects. They used vector quantization (VQ) and 
Lempel-Ziv entropy encoding for the compression. 
Wong et al. [27] addressed relighting of light fields 
encoding the light-dependence for every fixed view 
with spherical harmonics. Miller et al. [18] parameter-
ized light fields over surfaces (introducing Surface 
Light Fields) and encoded the images JPEG-like with a 
discrete cosine transform. In following work surface 
light fields were compressed using tailored versions of 
either VQ or PCA in order to handle the irregular sam-
pled data [28] and by PCA applied to subsets (around a 
vertex of the parameterized mesh) of the resampled 
data [2]. The results vary in approximation quality and 
rendering speed. 

While light fields allow renderings from novel 
viewpoints, reflectance fields enable rendering under 
arbitrary lighting conditions. Debevec et al. [5] ac-
quired and rendered surface reflectance fields from 
human faces. Interactive generation of novel view-
points was made possible by exploiting a human skin 
reflectance model. Matusik et al. [14] compressed re-

 
Figure 2. Comparison of simple texturing and BTF-rendering: On the left only one photo of a cor-
duroy material was wrapped around the cloth. On the right a corduroy BTF was used. 



flectance fields by block-wise PCA. The Polynomial 
Texture Map by Malzbender et al. [17] efficiently ap-
proximates and compresses nearly planar and diffuse 
surface reflectance fields by fitting a polynomial to 
each texel.  

Furukawa et al. [6] extended surface light field ren-
dering by (sparsely) sampling the whole angular space. 
To handle the increased amount of data, they used a 
generalization of matrix factorization called Tensor 
Product Expansion. The full angular space is also cov-
ered by the method of Lensch et al. [12] who used 
conventional BRDF-modeling in combination with an 
iterative clustering procedure to cope with insufficient 
sample density. 

2.2 Real-Time BTF-Rendering 

BTF-rendering can be understood as rendering of 
spatially varying materials under varying light and 
view conditions. A first real-time algorithm approach-
ing the task of BTF-rendering was published by Kautz 
and Seidel [8]. They introduced techniques for evaluat-
ing spatially varying BRDFs on graphics hardware by 
factoring the BRDFs into two-dimensional functions 
and storing the values in textures that are recombined 
for rendering. The technique was recently improved by 
Suykens et al. [26] who achieve good results for sim-
ple synthetic BTFs. McAllister et al. [15] published a 
different method exploiting graphics hardware that 
approximates the BTF by pixelwise Lafortune [10] 
models. They achieve good results for approximately 
flat materials with highly specular behavior. One year 
earlier already, Daubert et al. [4] published a similar 
approach in the context of rendering synthetic cloth 
BTFs. They additionally modulated the pixelwise La-
fortune models with a view-dependent factor in order 
to cope with self-occlusion effects. Unfortunately, their 
representation is not as compact at the previously men-
tioned ones. Meseth et al. [16] proposed an improved 
material representation based on reflectance fields 
which increases the real-time rendering quality of ma-
terials, especially if they feature high depth variation. 
They as well suffer from insufficient data compression. 
A different approach was introduced by Sattler et al. 
[22], who utilize PCA to compute Eigen-Textures that 
are composed during runtime based on view- and light-
dependent weights. While it is capable of producing 
photo-realistic renderings, it reduces the huge amounts 
of data contained in a BTF just by a small factor. The 
method was improved in terms of memory require-
ments and approximation quality by an approach of 
Müller et al. [19]. They perform clustering of the spa-
tially varying BDRFs by employing LPCA in order to 
compute Eigen-BRDFs. 

2.3 Real-Time Environmental Lighting 

Real-time rendering of geometric models with com-
plex surface materials in environments with arbitrary 
lighting situations has been an area of active research 
for some time already. The approaches of Heidrich and 
Seidel [7], Kautz et al. [9] and McAllister et al. [15] 
assume fixed BRDFs (e.g. Phong or Lafortune) and 
tackle environmental lighting by prefiltering the envi-
ronment with appropriate kernels. Unfortunately their 
methods achieve real-time frame rates for fixed light-
ing settings only and are restricted to rather simple 
material representations. A more general technique 
which handles arbitrary isotropic BRDFs was intro-
duced by Kautz and McCool [8]. Although it can han-
dle BRDFs of arbitrary complexity in principle, com-
plex BRDFs require extensive run-time computations 
in order to achieve high quality results. In addition, 
prefiltering times are quite high. A more efficient ap-
proach was presented by Latta et al. [11] which allows 
arbitrary isotropic BRDFs as well. It reduces the 
evaluation time at the cost of extensive precomputa-
tions which practically prohibits dynamic changes of 
the lighting situation. These overheads can efficiently 
be reduced by projecting the environmental light into a 
Spherical Harmonics basis, which has been done by 
several recent publications ([20][21][23]). Although 
real-time rendering can be achieved for low-frequency 
environments only, the results look very realistic. Un-
fortunately, these approaches cannot simply be applied 
to BTFs. Sloan et al. [25] presented such a method but 
it is limited to BTFs of rather small spatial extent. 
They also included Precomputed Radiance Transfer as 
introduced in [23] in order to support large-scale shad-
ows and inter-reflections. 

3. BTF Representation 

As depicted in figure 3, a sampled BTF can either 
be interpreted as a collection of discrete textures: 
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where ∆ denotes the set of discrete measured view- 
and light-directions, or as a set of tabulated BRDFs: 
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Please note, that these BRDFs do not fulfill physi-
cally demanded properties like reciprocity. In special 
they already contain a factor (n⋅l) between incident 
direction and surface normal.  This is also nicely illus-
trated in figure 3. 

The BTF-data employed in this work is a high-
quality RGB-sampling with |∆|=81×81 and 



|I|=256×256 leading to more than 1.2GB of data (sam-
ples available at http://btf.cs.uni-bonn.de). In order to 
reduce the memory requirements we apply the LPCA 
algorithm to BTFBrdf as in [19]. The resulting com-
pressed representation has the form 
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denotes the reconstruction of the BRDF at texel x 
from cB components of the PCA applied to the BRDFs 
in cluster kB(x) looked up from texel x. The Ei,k are the 
so called Eigen-BRDFs (i.e. the PCA-components in 
cluster k) and the mean is denoted by ( )BkB x . Adjusting 

the number of components cB and the number of clus-
ters |kB| allows for finding a flexible trade-off between 
memory-requirements, approximation quality and ren-
dering speed. For real-time rendering cB should be 
chosen as small as possible (cB<8), since rendering 
time depends on the number of components that have 
to be summed up. Depending on the material complex-
ity compression ratios between 1:50 and 1:250 intro-
ducing a relative error of only about 2% can be 
achieved. 
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Figure 3. Two arrangements of the BTF-data: 
As set of images (left) and as set of BRDFs 
(right). 

4. BTF Relighting 

Relighting BTF-covered geometry with an arbitrary 
and distant illumination environment Li requires com-
puting the lighting integral 

( ) BTF( ( ) ) ( ( ))
i

r iL T L d
Ω

= ⋅∫ pp, v p , v, l R l l      (1) 

over the incident hemisphere Ωi at surface point p. 
Here T denotes a texture coordinate mapping from the 
surface into the BTF and Rp represents a rotation ma-
trix from the local coordinate frame at p into global 
coordinates. 

4.1 Directional Light Basis 

Since the BTF-dataset represents the material's re-
sponse to a set Λ of directional light sources lj for 
some different views, this integral always reduces to a 
sum via projecting the illumination into this finite light 
basis and summing up the corresponding measure-
ments with the resulting weights: 
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For environments containing large area light 
sources the evaluation of this sum is obviously rather 
inefficient since many weights will be non-zero. So 
this approach is only suitable for rendering of scenes 
containing only a few directional or point light 
sources. 

4.2. Spherical Harmonics Light Basis 

Large and slowly varying light sources are much 
better represented in a low-order Spherical Harmonics 
(SH) basis expansion. Therefore we represent the inci-
dent lighting Li and the BTF for each texel x and view 
direction v in an n-th order (typically n=5) SH-basis 
expansion: 
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The projection coefficients aj and jbx,v  can be ob-

tained via numerical integration. Due to the ortho-
normality of the SH basis the lighting-integral now 
reduces to a simple dot product: 

, ( )( ) , ( )T
r iL = v p

pp, v b M a  (2) 

By ai and , ( )Tv pb  we denote the vectors of stacked 
SH coefficients and Mp denotes the high-dimensional 
SH-rotation matrix that rotates the lighting environ-
ment into the local coordinate frame. As in [23] this 
matrix could also represent a transfer matrix encoding 
for example large scale shadows and inter-reflections. 



Sloan et al. [25] published a BTF rendering algorithm 
based on this formulation. 

4.3 Combining Clustered Transfer and LPCA 
encoded BTFs 

Unfortunately the approach in [25] cannot easily be 
applied to BTFs that require high spatial resolution like 
our measured ones. 

The first problem is that we need to store about 130 
million SH-coefficients per channel for a fifth order 
SH-expansion of our measured BTFs resulting in al-
most 400MB storage using only one byte per coeffi-
cient. The second problem of the method is the bottle-
neck formed by transferring incident lighting into the 
local coordinate frame, which has to be done on the 
CPU for every mesh vertex. 

We propose LPCA encoding for the BTF coeffi-
cients to tackle the first problem. Instead of storing 
SH-coefficients for every texel only the Eigen-BRDFs 
have to be represented in the SH-basis. 

The second problem can be solved by applying 
LPCA also to the transfer matrices as done in [24]. 
Then transferring incident lighting can be handed over 
from CPU to GPU decoupling rendering speed from 
the size of the mesh. 

A straight-forward implementation would now sim-
ply combine the algorithms from [24] [25] and [19]. 
Unfortunately the costs still remain relatively high: For 
every pixel and every frame – even for fixed lighting – 
(cB+1) dot products between n2-component vectors 
(view-dependent BTF components and lighting) have 
to be computed und summed up with the correspond-
ing weights. Additionally for every vertex the trans-
ferred lighting vector has to be reconstructed and in-
terpolated over the triangle. To avoid this large over-
head we propose an alternative method that allows for 
faster rendering with fixed lighting and decouples the 
computation of the dot products from screen resolu-
tion. It is based on the LPCA expansion of the transfer 
matrices and the BTF. 

Expressed in its LPCA basis the transfer matrix Mp 
is given by 
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The view-dependent SH-coefficients for every 
BTF-texel can be reconstructed from the mean and 
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The cluster index look-up is denoted with kM() and 
kB() respectively. Now equation (2) can be expressed 
in terms of the LPCA components: 
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Equation 3 reduces the computation of the lighting 
integral for a fixed lighting environment to a simple 
weighted sum of dot products that can be precomputed 
independently from screen resolution and mesh-
complexity. The dot products 

, , , , ,( ) , ( )
B M B Mm k j k i m k j k iλ =v va e m a  

must be recomputed only if the lighting vector ai 
changes. Of course the cost for this computation in-
creases with the number of clusters and components 
since |kM|*(cM+1) matrix-vector multiplications and 
|kB|*|kM|*(cB+1)*(cM+1)*|v| dot products have to be 
computed for each color channel. But there is always 
the possibility to trade quality for speed simply by us-
ing fewer components. Thus we implemented a simple 
adaptive rendering scheme that is described in detail in 
the following section. 

5. Real-Time Rendering 

Rendering meshes covered with LPCA encoded 
BTFs in environments with arbitrary lighting (repre-
sented as environment maps) consists of two steps: 
precomputing the parameters for the current lighting 
situation on the CPU and rendering the mesh using 
these parameters. 

5.1 Precomputation of PRT Values 

The precomputation step has to compute the 
abovementioned dot-products and store them in tex-
tures in a format suitable for graphics hardware. We 
found parabolic hemispherical maps [7] to be a good 
choice since they provide an approximately equal sam-
pling of the hemisphere and since values stored in this 
format can easily be interpolated by graphics hard-
ware. That way, interpolation between sampled view-
directions can be achieved. In all our tests a resolution 
of 16×16 texels led to satisfying results. 

Since current graphics hardware prohibits linear in-
terpolation of floating-point valued textures, we have 
to map the high-dynamic range PRT values 

, , ,B Mm k j kλ v to 8 bit integers. Since the values differ 

significantly but can roughly be categorized into four 



Figure 4. Rendering setup of the fragment shaders
categories (one category for m=j=0, a second for m=0 
and j≠0, a third for m≠0 and j=0, and a fourth for m≠0 
and j≠0), we compute four different scaling values, 
apply them to the PRT values before storage in a tex-
ture and send the inverse factors to the graphics board. 

5.2 Rendering the Mesh 

Rendering the mesh given the precomputed parame-
ters for the current lighting situation is done using a 
setup similar to Sloan et al. [24]. The triangles of the 
mesh are sorted into bins according to the matrix clus-
ters of the vertices of the triangles (i.e. whenever at 
least one vertex of the triangle belongs to the matrix 
cluster assigned to the bin, the triangle is inserted into 
the bin). For every triangle in every bin we specify 
three Boolean parameters indicating whether the verti-
ces belong to the bin’s cluster. At run-time the trian-
gles in the bins are rendered independently. Taking 
into account the Boolean parameters, only vertices 
belonging to the bin’s rotation cluster contribute to the 
partial image produced by the bin. The partial results 
are accumulated by setting the blending mode to add. 

Other than in Sloan et al. [24] the vertex shader 
simply computes the local view direction and sets the 
matrix cluster weights to zero if the Boolean parameter 
of the vertex is set to false. The majority of computa-
tion is performed in the fragment shaders (see figure 4 
for a schematic description). The inputs to the shader 
are the texture coordinates of the current fragment, the 
local view direction (which is interpolated from the 
local view directions at the vertices), the matrix cluster 
index and the interpolated matrix cluster weights. 
Based on the texture coordinates we lookup the mate-
rial cluster index and the material cluster weights. The 
local view direction serves as index into a cube map 
that returns corresponding Parabolic Map coordinates. 
Based on these coordinates, the matrix and material 
cluster indices, we lookup PRT values from a 2D tex-
ture – one for each material and matrix cluster. The 
final color of the fragment is computed according to 
equation 3. 

Please note that figure 4 omits the necessary scaling 
of the 8 bit PRT values. 

5.3 Results 

We implemented the rendering algorithm on an In-
tel Pentium IV 2.6 GHz processor with a GeForce FX 
5900 graphics board using OpenGL. 

Precomputing the PRT values whenever the light 
situation changes takes about 0.8 seconds for 32 matrix 
clusters, 8 matrix components, 16 BTF clusters and 4 
BTF components – a high-quality setting that suffices 
for the tested models and materials. Since this number 
is much too high for interactive light changes, we 
choose a smaller numbers of components whenever the 
model is rotated in the environment (i.e. only 4 matrix 
and 1 BTF components). Since the preprocessing time 
decreases approximately linearly with the number of 
clusters and components, the precomputation time is 
reduced so much that even real-time navigation be-
comes possible. Although not implemented in our 
framework, this technique naturally applies to varying 
lighting environments (e.g. due to video textures) as 
well. 

Rendering times for the meshes mainly depend on 
the screen projection size of the model and on the 
number of components (both matrix and BTF) that we 
employ. As you can see in the accompanying video, 
the frame rates for the high-quality setting are close to 
real-time (about 12 fps) even at high resolutions. These 
frame-rates can as well be achieved for models cov-
ered with multiple BTFs. 

Figure 5 shows two models covered with LPCA en-
coded BTFs which are lit by image-based lighting. 
Please note the different colors on the Isis statue result-
ing from the colored lighting environment (i.e. the red-
dish-brown light reflected from the table below the 
statue which lights the bottom right part of the statue’s 
dress and the rather white, dominating light from the 
window which lights the remainder of the statue). Fig-
ure 6 compares the appearance of the Max Planck bust 



lit by several different lighting environments and dem-
onstrates the effect of large-scale shadowing. 

The memory requirements for the PRT values λ 
sum up to about 16.9 MB if 8 bit integer values are 
used for each RGB channel (which we found to yield 
pleasing results in our tests). This potentially enables 
use of multiple BTF materials in scenes lit by envi-
ronmental lighting. Unfortunately, current driver ver-
sions still support automatic filtering of textures with 
width and size both being a power of two only al-
though the ARB_texture_non_power_of_two [1] ex-
tension was specified already. We therefore have to 
use textures of size 4096×4096 that consume approxi-
mately 50 MB of texture memory. With upcoming 
driver versions this necessity will be removed. 

6. Conclusions 

In this paper we presented a method for efficient re-
lighting of LPCA encoded BTFs. We exploited the 
SH-basis for fast evaluation of the lighting integral and 
proposed a rendering algorithm that computes substan-
tial parts of a reformulated lighting integral independ-
ent from screen resolution and geometry size. The re-
sults of these computations can be reused to speed up 
rendering for fixed lighting. Fast lighting change is 

supported by decreasing the quality of the reconstruc-
tion temporarily. 
As future work, we will try to better and more flexibly 
balance precomputation and rendering time. 
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Figure 6. From left to right: Plasterstone covered Max Planck bust lit by Galileo, UBO and the 
RNL environment. The rightmost image is without large-scale shadows. 


