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Abstract

The Bidirectional Texture Function (BTF) is a suit-
able representation for the appearance of highly de-
tailed surface structures under varying illumination
and viewing conditions. In most current approaches
the BTF is aquired by a series of images of a flat
probe taken under different light and camera posi-
tions. Due to its huge size, real-time rendering of
objects textured with this six-dimensional data re-
quires suitable approximations.

In this paper we present a new approach for BTF-
compression and real-time rendering using much
less memory than other comparable approaches
whilst achieving similar quality. Our method ex-
ploits a BRDF-wise arrangement of the data and
employs a flexible generalization of the well-known
Principal Component Analysis (PCA) named local
PCA for the data compression.

1 Introduction

The visual quality of computer generated images
depends on exact geometric modeling and realis-
tic simulation of light and reflection. Because full
and physical correct simulation of the interaction
between light and matter is infeasible in practice,
considerable effort has been spent on developing re-
flection models, which describe the reflection prop-
erties of a possibly wide range of materials with a
small set of parameters.

Most of these approaches model the Bidirec-
tional Reflectance Distribution Function (BRDF) of
surface points. Since they describe reflectance on
a micro-scale only (the underlying geometry is too
small to be visible to the viewer), they cannot cap-
ture the full complexity of reflection behavior on in-
homogenous materials.

Materials with spatially varying reflectance prop-
erties can be described by the BTF, which was in-
troduced by Dana et al [4]. Since the complex ef-
fects like self-occlusions and inter-reflections aris-
ing from the arbitrary mesostructure captured by
measured BTFs seem to be intractable by a general
and simple mathematical model, the BTF is usually
represented by a series of images taken under dif-
ferent light and camera poses. Unfortunately, typ-
ical materials contain high-frequency content both
in the spatial and angular domain, requiring a high-
density sampling consisting of thousands of images
to represent the BTF with sufficient quality [18].
Rendering directly from this data via linear inter-
polation is impractical and obviously not real-time
even on todays sophisticated hardware. Therefore
some sort of approximation is required. Such ren-
derable BTF representations should simultaneously
achieve good approximation quality, high compres-
sion rates and provide the possibility for real-time
rendering.

In this paper, we analyze PCA-based BTF ap-
proximation and present the following key improve-
ments over existing methods:

e Instead of applying PCA to sets of images, we

utilize a BRDF-arrangement of the data.

e We applied the local PCA [10] to the data, a
method combining Vector Quantization (VQ)
and PCA exploiting the local linearity of high-
dimensional datasets.

We show experimentally, that these enhancements
significantly reduce the approximation error. As a
result the number of PCA components can safely be
reduced, which makes real-time rendering possible
and tremendously increases the compression rate
compared to similar methods. Finally, we present
a real-time rendering algorithm for our model ex-
ploiting the abilities of current graphics boards.
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2 Related Work

Our work is naturally related to any work done
in the field of image-based rendering, especially if
new images are generated from a huge set of pre-
acquired images and thus data compression has to
be applied to deal with the large amount of data.

In their pioneering work Levoy and Hanrahan
[14] introduced light-field rendering and they used
VQ and Lempel-Ziv entropy encoding for the com-
pression. Miller et al. [21] parameterized light fields
over surfaces (introducing Surface Light Fields) and
encoded the images JPEG-like with a discrete co-
sine transform. In following work surface light
fields were compressed using tailored versions of
either VQ or PCA in order to handle the irregular
sampled data [29] and by PCA applied to subsets
(around a vertex of the parameterized mesh) of the
resampled data [3][22].

While light fields allow renderings from novel
viewpoints, reflectance fields enable rendering un-
der arbitrary lighting conditions. Debevec et al.
[8] acquired and rendered surface reflectance fields
from human faces. Generation of novel viewpoints
was made possible by exploiting a human skin re-
flectance model. Matusik et al. [16] compressed
reflectance fields by block-wise PCA. The Polyno-
mial Texture Map by Malzbender et al. [15] approx-
imates nearly planar and diffuse surface reflectance
fields efficiently by fitting a polynomial to each
texel. Ashikhmin and Shirley [1] used basis textures
lit by a steerable light basis for relighting.

Furukawa et al. [9] extended surface light field
rendering by (sparsely) sampling the whole angular
space. To handle the increased amount of data, they
used a generalization of PCA called Tensor Product
Expansion. The full angular space is also covered
by the method of Lensch et al. [12] who used con-
ventional BRDF-modeling in combination with an
iterative clustering procedure to cope with insuffi-
cient sample density.

Our work is more closely related to methods
that consider material independently from geome-
try, which can roughly be grouped in two categories.

The first group interprets the BTF as a set of spa-
tially varying BRDFs and fits simple analytic func-
tions to the discrete BRDFs achieving impressive
compression rates. Real-time rendering is possi-
ble, since the BRDF representations require few pa-
rameters and can be evaluated efficiently in hard-
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ware. McAllister et al. [19] fitted Lafortune lobes
to the BRDFs that they defined per discrete surface
point (i.e. texel). Daubert et al. [7] additionally in-
corporated a view-dependent look-up table dealing
with the flattening effect of the simple Lafortune-
model'. This effect was also noted in recent work of
Meseth et al. [20] who proposed fitting the surface
reflectance fields independently in order to preserve
the depth structure of the surface. Still, this group
of methods suffers from lack of rendering quality
due to the simplicity of the fitted analytic functions.

The second group of methods was developed in
the context of pattern-recognition and they intended
to model the statistical properties of BTFs. The ex-
tracted information has been used in classification
and recognition of materials under arbitrary light
and viewing conditions (see for example [6], [13],
[26] and [28]) or for BTF-synthesis [5][27]. Re-
cently, Sattler et al. [23] presented the first BTF-
rendering method based on this kind of data-driven
approach. They used PCA on subsets of the im-
ages that represent the sampled BTF and were able
to decode and render the compressed data at high
quality at interactive frame-rates. But their method
is restricted to scenes containing very few materi-
als only, since even one compressed BTF still con-
sumes more than 200MB.

3 BTF-Compression

The BTF as originally introduced by Dana et al. [4]
is a function of 2D-texture varying with 4D light
and view direction (neglecting wavelength). In this
section we describe our sampling of this function
and how data compression can effectively be ap-
plied to the sampled data such that real-time ren-
dering becomes possible.

3.1 Definitions

As depicted in figure 1, a sampled BTF can be in-
terpreted as a collection of discrete textures

BTFTex = {T(Vxl)}(v,l)GM

where M denotes the set of discrete measured
view- and light-directions (v, 1), or as a set of tabu-

LOf course the precision of a Lafortune-representation can be
increased by adding more lobes. Unfortunately, non-linear fitting
is only practical up to 3-4 lobes.



Figure 1: Two arrangements of the BTF data: As
set of images (left) and as set of BRDFs (right).

lated BRDFs

BTFp,y := {B(X)}erCN2 :

Note, that these BRDFs do not fulfill physically de-
manded properties like reciprocity. Furthermore,
they already contain a factor (n - 1) between inci-
dent direction and surface normal. This is nicely
illustrated in figure 1.

The BTF-data employed in this work is a high-
quality RGB-sampling with |[M| = 81 x 81 and
|I| = 256 x 256 leading to more than 1.2GB of data
(consider [23] for details on the measurement pro-
cedure). Real-time rendering of the raw data is im-
practical, considering that a typical scene will con-
tain several materials. Therefore some sort of data
compression has to be applied.

A very common technique is the PCA, which
provides the in a least-squares sense optimal affine-
linear approximation. Linear approximations have
the advantage of fast fitting time and efficient eval-
uation on modern graphics hardware. But unfor-
tunately, BTFs generally exhibit highly non-linear
effects like specularities or self-occlusions due to
viewpoint change which may require many coeffi-
cients in order to be reproduced in a visually satis-
fying quality. On the other hand Basri and Jacobs
[2] have shown recently, that the space of images
of a lambertian object under arbitrary illumination
lies close to a linear 9D-subspace. At least PCA can
provide some information about the complexity of
the dataset.

3.2 Eigen-Textures vs. Eigen-BRDF's

To apply PCA to the sets BTFz, and BTFp,, we
simply interpret the elements T{y 1y and B(x) as
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3x256x256 and 3x81x81 elemental vectors respec-
tively, subtract the mean (denoted by T', B, respec-
tively) from each vector and put them into a large
matrix A%. The principal components are the eigen-
vectors of the symmetric matrix AAT. We used
the numerical package LAPACK to solve the re-
sulting large eigen-problems. The principal com-
ponents E* of BTFz, are well known as Eigen-
Textures, thus we simply call the components Ef raf
Eigen-BRDFs.

The reconstructions T(val) and B(Cx) are given as
follows:

c
TGy = T+ Z(T(v,l) - T,E{") » E{""
=1
B(Cx) — B + Z(B(x) — B’ Ef&if) % Ei}3rdf
=1

Since the rendering algorithm presented in section
4 can efficiently handle ¢ < 8 we are interested in
the error remaining for a given c. We measure the
average absolute reconstruction error

Z ||T(vyl) B T(cv,l) Il

¢(BTFp.,, ) =
whem M

with a similar expression for e(BTFgqy, ).

According to our measurements, the BRDF-
arrangement performs slightly better (see figure
2 for an example). This can be explained with
the eigenvalue-plot in figure 2: The variance in
BTF3,4 depends only on the complexity of the sur-
face i.e. on spatial variation of reflectance prop-
erties and shadowing- and masking-effects while
in BTFz, additional variance is introduced by the
measurement process i.e. registration errors and fil-
tering. Furthermore, specularities introduce strong
variance among the textures, while their variation
across the BRDFs depends only on the material
structure.

But nevertheless the average error of an 8-
component Eigen-BRDF approximation is still
3.8% (4.2% for Eigen-Texture), which results in no-
table blurring in the reconstructions (figure 3). But
since using more components is prohibited, another
way to error reduction has to be found. In the next
section we will demonstrate a method to signifi-
cantly reduce the error by using a combination of
VQ and PCA.

2In this case not the whole dataset was used as the training set,

because it otherwise would exceed the maximum memory block
size
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Figure 2: Average reconstruction error (top) and
eigenvalues for the material proposte.

3.3 Error-reduction with local PCA

Although not globally linear, many high-
dimensionally datasets show a local linear
behavior. This basic observation leads to the local
PCA method, which was introduced by Kambhatla
and Leen[10] to the machine-learning community
in competition to classical non-linear/neural-
network learning algorithms®. In contrast to more
sophisticated non-linear dimensionality reduction
techniques as used for example recently in data-
driven BRDF-modeling [17] this method introduces
no additional run-time cost to the reconstruction
apart from a simple cluster look-up.

The encoding stage of the algorithm can be sum-

marized as follows:

1. Initialize k cluster-centers r; randomly chosen
from the dataset. Assign a collection of ¢ unity
basis-vectors e; ; to each cluster.

2. Partition the dataset into regions by assigning
each data-vector to its closest center. The dis-

3Inclependemly from our work this method was introduced into
computer graphics in a recent paper on Precomputed Radiance
Transfer[25].
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Figure 3: The original frontal view of the proposte
texture (left), the reconstruction for ¢ = 8 without
clustering (top) and with k = 32 clusters (bottom)
from BTFg,4 (middle) and from BTFz, (right) with
enhanced (multiplied by 4) and inverted difference
images.

tance to a center r; is given by squared recon-
struction error:
c
lz—,[1* = [la—r; =Y (@—rj,ei5)eisll
i=1

. Compute new centers r; as the mean of the
data in the region j.

. Compute a new set of basis-vectors e;,; per re-
gion, i.e. perform a PCA in each region.

. Iterate steps 2.-4. until the change in average
reconstruction error falls below a given thresh-
old.

We applied the method to both BTF7., and BTF 4.

Reconstructed samples are depicted in figure 3. The

improvement in average reconstruction error de-

pending on the number of clusters k is shown in
figure 4. Note, that more than 30 PCA-components
are needed to reach the quality achieved by using

16 clusters and only 8 components. Since the re-

construction cost is dominated by the number of



components which have to be summed up during
rendering, this enables fast rendering as shown in
section 4.

Please note also the superior behavior of the
BRDF-wise arrangement. This supports intuition,
since most materials are made of resembling parts
leading to natural clusterings. Another great ad-
vantage of the BRDF-wise arrangement arises from
the fact, that the spatial sampling density is usu-
ally higher than the angular one (|I| > |M]). The
memory needed for an additional cluster is given by
the number of the used principal components which
have dimension |I| or | M| respectively. In our case
|[I| ~ 10 * | M| what is also reflected in table 1.
In a typical case with k = 32,c = 8 we achieve a
compression ratio of about 1:100 against 1:10.
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Figure 4: Average reconstruction error for increas-
ing number of clusters k£ and fixed number of com-
ponents ¢ = 8 (proposte).

kel 4 6 8 10
Tx 4 63 95 127 159
Brdy 115 173 23 29
8§ |[126 189 253 316
178 268 3.57 446
16 [ 252 378 504 63
304 46 6 16
32 |[504 755 1008 1259
56 84 111 139

Table 1: Size of the local PCA-compressed data in
million bytes depending on the number of clusters k
and components c. The data format is 16-bit float.
The size of the original data is 1.2GB.

666

4 BTF-Rendering

4.1 Rendering Algorithm

Accurate rendering algorithms have to compute re-
sults approximating the rendering equation for ev-
ery surface point x by computing outgoing radiance
L, as follows (neglecting emissive effects):

L.(x,v) = | BRDFx(v,1)L;(x,1)(ng - 1)dl

Q;

Here, BRD F denotes the BRDF for point x, L;
denotes incoming radiance, n is the surface normal
and (Q; is the hemisphere over x. Employing mea-
sured BTFs, the following approximation results:

L.(x,v)~ | BTF(x,v,l)L;(x,1)dl

Q;

The area foreshortening term is removed since
this effect is represented in the measured BTFs al-
ready. In the presence of a finite number of point
light sources only, the integral reduces to a sum.
Approximating the BTF by the clustered Eigen-
BRDFs, the above equation reduces to

L, (x,

)N
~
c

Brd,
Zak’m(x,v,lj)E rdf
k=1

v
k,m

n
> (v, 1) Li(x,15)
j=1

Here, n denotes the number of light sources, o
denotes the projections on the respective basis vec-
tors as in section 3.1, ¢ is the number of components
from the clustered Eigen-BRDFs Ef ;df (m is the
cluster or material index). Since the BTF was sam-
pled for fixed light and view directions only, linear
interpolation is employed to support arbitrary view
and light directions, resulting in the final equation:

Ly(x,v) &

n c
~ T\ pBrdf/~ 7
S Y wei > akm (T DESI @ DLi(x, 1))
j=1v¥eN(v) k=1
fenqy)
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Figure 5: Data Flow during Rendering. The elements of the basic rendering algorithm are highlighted by
bold font, thick arrows and thick borders. The other elements contribute to the view and light direction
interpolation. The required data is stored in several textures. All processing takes place in the pixel shaders.

By N(v) we denote the set of neighboring view
directions of v, for which data was measured
(N (1) respectively), while w denotes an interpola-
tion weight.

The BTF data needed for rendering is stored in
three textures as depicted in figure 5. A rectangular
texture 77 stores material cluster indices together
with sets of floating-point PCA weights o which de-
termine, how the components of the indexed Eigen-
BRDFs are to be combined. Another rectangular
texture 75 holds the floating-point valued compo-
nents of the Eigen-BRDFs for the various clusters.

We employ two cube-maps to determine the three
closest measured view- and light-directions for the
current view- and light-direction and the respective
interpolation weights.

The rendering process is depicted in figure 5. The
inputs are standard texture coordinates, the eye and
light positions, and a per-pixel coordinate system,
which is interpolated from the local coordinate sys-
tems at the vertices which are specified with the ge-
ometry and stored in display lists.

We first compute view and light directions and
transform them into the pixel’s coordinate system.
Using cube maps, we lookup the three closest view
and light-directions from the measurement process,
together with their interpolation weights (please
note that for the basic rendering algorithm only the
nearest view and light direction is needed). The in-
terpolation weights for each pair of closest view and
light direction are multiplied to yield the final nine
interpolation weights.

At the same time, the basic rendering algorithm
is performed: using the texture coordinates, we
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lookup cluster indices and PCA weights for every
pixel on the screen (just as we would lookup col-
ors for texture mapping). The cluster index is used
to select the appropriate 81x81x3 vectors represent-
ing the ¢ Eigen-BRDFs of the current cluster from
T5. The view and light direction are used to select
the appropriate RGB components from the large
vectors. If interpolation is used, this lookup is re-
peated for every pair of closest view and light di-
rection. Combining the PCA weights of the current
pixel with the RGB components, the uninterpolated
colors are computed (one for each pair of closest
view and light direction). In a final step, these col-
ors are multiplied with their respective interpolation
weights and the results are summed to form the final
color of the pixel.

4.2 Results

We implemented our rendering algorithm on a
Geforce FX graphics board, since it supports the
Pixel Shader 2.0+ extension, which permits frag-
ment programs containing up to 1024 instructions.
A single rendering pass with a single light source
only and without interpolation requires about 50
instructions. Interpolation between the nine clos-
est measured pairs of light and view directions in-
creases the count to about 300 instructions - a quite
challenging number even for the newest graphics
boards with 8 pixel pipelines and GPU clock fre-
quencies of up to 500 MHz. We achieved frame-
rates of about 14 Hz for typical models. We expect
better frame-rates for upcoming versions of the cur-
rent Windows OpenGL driver, which appears not



Figure 6: Magnified view of the stone covered
sphere from figure 8. The images visualize the re-
duced quality if byte values are used to represent
PCA components and PCA weights.

to be optimized to handle large amounts of texture
memory - especially if floating point textures are
employed.

Our approach was tested with several materi-
als and models. Figure 7 shows the tremendous
quality difference between simple lit textures and
BTF rendering. Both pictures were taken under the
same lighting conditions. As the samples from the
measurement show, the appearance of the material
changes drastically under varying light and view di-
rections which is correctly modelled by the BTF
rendering algorithm, leading to specular highlights,
accurate dimming and realistic color changes. The
lit textures (diffuse lighting was assumed) cannot
(sufficiently) reproduce these effects. Please note
that in this case even bump mapping would not pro-
duce substantially better results than the lit textures
since the wallpaper is approximately flat.

In figure 6 the difference in quality using either 8
bit fixed point (byte) or 16 bit floating point (float)
valued PCA components and weights is shown. In
the left image, both components and weights were
represented by byte values. In the right image float
values were employed, leading to very smooth color
changes. Using byte values produces renderings
with alias effects, incorrectly spaced and shaded
highlights and an overall lack of sharpness.

Figure 9 shows the astonishing depth impres-
sion achieved by our BTF rendering method. The
proposte material makes the flat, triangular cloth
model appear very bumpy. In figure 8, correct self-
shadowing of the material and specular highlights
are visible, while the knitted wool material in figure
10 correctly reproduces real-world effects like loss
of structure for grazing viewing angles (i.e. the oth-
erwise bumpy surface appears approximately flat).
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5 Conclusions and Future Work

In this work, we presented a flexible framework for
compression and real-time rendering of measured
BTFs achieving better compression rates and lower
error than other comparable methods. We applied
the local PCA-algorithm to two arrangements of the
dataset and found out experimentally, that the ar-
rangement in terms of tabulated BRDFs performs
much better than the classical per-image approach
both in memory requirements and approximation
error. This result can be expected for most real
world materials, where surface-parts show resem-
bling reflectance behavior.

In addition, we presented a rendering algorithm
running completely on the GPU that achieves real-
time frame rates for moderate resolutions, due to the
large number of per-pixel operations. Additional
hardware features allowing simultaneous lookup
from several texture units would significantly speed
up this process (e.g. by looking up all 8 PCA com-
ponents at once, the number of instructions would
be reduced to about a third).

For future work we will inspect, if the structure of
the principal components gives rise to further mod-
eling. One possibility would be for example the
application of common BRDF-modeling techniques
to the Eigen-BRDFs.

Furthermore, we will implement a MIP-mapping
strategy for rendering. Generation of distinct MIP-
levels will require recomputation of cluster indices
and PCA weights for the pixels of the MIP-map.
Linear interpolation between different MIP-levels
will be possible as well but will require specifically
designed shaders.

Additionally, we plan to extend our rendering al-
gorithm to allow natural, image-based lighting fol-
lowing the approach described by Sloan et al. [24]
and Kautz et al. [11].
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Figure 7: Cloth covered with wallpaper. Comparison between BTF rendering (right) and lit textures (left). In the middle,
two samples from the measurement process of the wallpaper material taken under varying view and light direction.

Figure 8: Stone covered Sphere.

Figure 10: Woolen Shirt.
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